Visible to the public Biblio

Filters: Keyword is Endogenous security  [Clear All Filters]
2023-07-11
Qin, Xuhao, Ni, Ming, Yu, Xinsheng, Zhu, Danjiang.  2022.  Survey on Defense Technology of Web Application Based on Interpretive Dynamic Programming Languages. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :795—801.

With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.

2021-08-17
Jin, Liang, Wang, Xu, Lou, Yangming, Xu, Xiaoming.  2020.  Achieving one-time pad via endogenous secret keys in wireless communication. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1092–1097.
The open and broadcast nature of wireless channels makes eavesdropping possible, leading to the inherent problem of information leakage. Inherent problems should be solved by endogenous security functions. Accordingly, wireless security problems should be resolved by channel-based endogenous security mechanisms. Firstly, this paper analyzes the endogenous security principle of the physical-layer-secret-key method. Afterward, we propose a novel conjecture that in a fast-fading environment, there must exist wireless systems where the endogenous secret key rate can match the user data rate. Moreover, the conjecture is well founded by the instantiation validation in a wireless system with BPSK inputs from the perspectives of both theoretical analysis and simulation experiments. These results indicate that it is possible to accomplish the one-time pad via endogenous secret keys in wireless communication.