Biblio
Filters: Keyword is Shilling Attack [Clear All Filters]
Injection Shilling Attack Tool for Recommender Systems. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1—4.
.
2021. Recommender systems help people in finding a particular item based on their preference from a wide range of products in online shopping rapidly. One of the most popular models of recommendation systems is the Collaborative Filtering Recommendation System (CFRS) that recommend the top-K items to active user based on peer grouping user ratings. The implementation of CFRS is easy and it can easily be attacked by fake users and affect the recommendation. Fake users create a fake profile to attack the RS and change the output of it. Different attack types with different features and attacking methods exist in which decrease the accuracy. It is important to detect fake users, remove their rating from rating matrix and recognize the items has been attacked. In the recent years, many algorithms have been proposed to detect the attackers but first, researchers have to inject the attack type into their dataset and then evaluate their proposed approach. The purpose of this article is to develop a tool to inject the different attack types to datasets. Proposed tool constructs a new dataset containing the fake users therefore researchers can use it for evaluating their proposed attack detection methods. Researchers could choose the attack type and the size of attack with a user interface of our proposed tool easily.
A Shilling Attack Model Based on TextCNN. 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :282–289.
.
2020. With the development of the Internet, the amount of information on the Internet is increasing rapidly, which makes it difficult for people to select the information they really want. A recommendation system is an effective way to solve this problem. Fake users can be injected by criminals to attack the recommendation system; therefore, accurate identification of fake users is a necessary feature of the recommendation system. Existing fake user detection algorithms focus on designing recognition methods for different types of attacks and have limited detection capabilities against unknown or hybrid attacks. The use of deep learning models can automate the extraction of false user scoring features, but neural network models are not applicable to discrete user scoring data. In this paper, random walking is used to rearrange the otherwise discrete user rating data into a rating feature matrix with spatial continuity. The rating data and the text data have some similarity in the distribution mode. By effective analogy, the TextCNN model originally used in NLP domain can be improved and applied to the classification task of rating feature matrix. Combining the ideas of random walking and word vector processing, this paper proposes a TextCNN detection model for user rating data. To verify the validity of the proposed model, the model is tested on MoiveLens dataset against 7 different attack detection algorithms, and exhibits better performance when compared with 4 attack detection algorithms. Especially for the Aop attack, the proposed model has nearly 100% detection performance with F1 - value as the evaluation index.
Multi-Armed-Bandit-based Shilling Attack on Collaborative Filtering Recommender Systems. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :347–355.
.
2020. Collaborative Filtering (CF) is a popular recommendation system that makes recommendations based on similar users' preferences. Though it is widely used, CF is prone to Shilling/Profile Injection attacks, where fake profiles are injected into the CF system to alter its outcome. Most of the existing shilling attacks do not work on online systems and cannot be efficiently implemented in real-world applications. In this paper, we introduce an efficient Multi-Armed-Bandit-based reinforcement learning method to practically execute online shilling attacks. Our method works by reducing the uncertainty associated with the item selection process and finds the most optimal items to enhance attack reach. Such practical online attacks open new avenues for research in building more robust recommender systems. We treat the recommender system as a black box, making our method effective irrespective of the type of CF used. Finally, we also experimentally test our approach against popular state-of-the-art shilling attacks.