Visible to the public Biblio

Filters: Keyword is Voltage fluctuations  [Clear All Filters]
2023-03-17
Podeti, Raveendra, Sreeharirao, Patri, Pullakandam, Muralidhar.  2022.  The chaotic-based challenge feed mechanism for Arbiter Physical Unclonable Functions (APUFs) with enhanced reliability in IoT security. 2022 IEEE International Symposium on Smart Electronic Systems (iSES). :118–123.
Physical Unclonable Functions (PUFs) are the secured hardware primitives to authenticate Integrated Circuits (ICs) from various unauthorized attacks. The secured key generation mechanism through PUFs is based on random Process Variations (PVs) inherited by the CMOS transistors. In this paper, we proposed a chaotic-based challenge generation mechanism to feed the arbiter PUFs. The chaotic property is introduced to increase the non-linearity in the arbitration mechanism thereby the uncertainty of the keys is attained. The chaotic sequences are easy to generate, difficult to intercept, and have the additional advantage of being in a large number Challenge-Response Pair (CRP) generation. The proposed design has a significant advantage in key generation with improved uniqueness and diffuseness of 47.33%, and 50.02% respectively. Moreover, the enhancement in the reliability of 96.14% and 95.13% range from −40C to 125C with 10% fluctuations in supply voltage states that it has prominent security assistance to the Internet of Things (IoT) enabled devices against malicious attacks.
2022-07-05
Zhang, Guangdou, Li, Jian, Bamisile, Olusola, Zhang, Zhenyuan, Cai, Dongsheng, Huang, Qi.  2021.  A Data Driven Threat-Maximizing False Data Injection Attack Detection Method with Spatio-Temporal Correlation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :318—325.
As a typical cyber-physical system, the power system utilizes advanced information and communication technologies to transmit crucial control signals in communication channels. However, many adversaries can construct false data injection attacks (FDIA) to circumvent traditional bad data detection and break the stability of the power grid. In this paper, we proposed a threat-maximizing FDIA model from the view of attackers. The proposed FDIA can not only circumvent bad data detection but can also cause a terrible fluctuation in the power system. Furthermore, in order to eliminate potential attack threats, the Spatio-temporal correlations of measurement matrices are considered. To extract the Spatio-temporal features, a data-driven detection method using a deep convolutional neural network was proposed. The effectiveness of the proposed FDIA model and detection are assessed by a simulation on the New England 39 bus system. The results show that the FDIA can cause a negative effect on the power system’s stable operation. Besides, the results reveal that the proposed FDIA detection method has an outstanding performance on Spatio-temporal features extraction and FDIA recognition.
2022-02-10
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  Energy-Storage Fed Smart Inverters for Mitigation of Voltage Fluctuations in Islanded Microgrids. 2020 IEEE Electric Power and Energy Conference (EPEC). :1–6.
The continuous integration of intermittent low-carbon energy resources makes islanded microgrids vulnerable to voltage fluctuations. Besides, different dynamic response of synchronous-based and inverter-based distributed generation (DG) units can result in an instantaneous power imbalance between supply and demand during transients. As a result, the ac-bus voltage of microgrid starts oscillating which might have severe consequences such as blackouts. This paper modifies the conventional control scheme of battery energy storage systems (BESSs) to participate in improving the dynamic behavior of islanded microgrids by mitigating the voltage fluctuations. A piecewise linear-elliptic (PLE) droop is proposed and employed in BESS to achieve an enhanced voltage profile by injecting/absorbing reactive power during transients. In this way, the conventional inverter implemented in BESS turns into a smart inverter to cope with fast transients. Using the proposed approach in this paper, any linear droop curve with a specified coefficient can be replaced by a PLE droop curve. Compared with linear droop, an enhanced dynamic response is achieved by utilizing the proposed PLE droop. Case study results are presented using PSCAD/EMTDC to demonstrate the superiority of the proposed approach in improving the dynamic behavior of islanded microgrids.
ISSN: 2381-2842
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  PV-Fed Smart Inverters for Mitigation of Voltage and Frequency Fluctuations in Islanded Microgrids. 2020 International Conference on Smart Grids and Energy Systems (SGES). :807–812.
The vulnerability of islanded microgrids to voltage and frequency variations is due to the presence of low-inertia distributed generation (DG) units. Besides, the considerable difference between the inertia of synchronous-based and inverter-based DGs results in a power mismatch between generation and consumption during abnormal conditions. As a result, both voltage and frequency of microgrid ac-bus start oscillating which might lead to blackouts. This paper deploys the traditional controller of photovoltaic (PV) units to improve the dynamics of islanded microgrids by reducing the voltage and frequency deviations. To this end, an adaptive piecewise droop (APD) curve is presented and implemented in PV units to attain a faster balance between supply and demand during transients, leading to an enhanced frequency response. Besides, the reactive-power control loop is equipped with a droop characteristic which enables the PV units to inject/absorb reactive power during transients and participate in voltage-profile enhancement of the system. Case study results are presented using PSCAD/EMTDC to confirm the validity of proposed method in improving the dynamic behavior of islanded microgrids.
2021-11-29
ZHANG, Yi-jun.  2021.  A Longitudinal-Bending Fluid-Cavity Coupled Broadband Underwater Acoustic Transducer. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :390–393.
Acoustic tomography experiments for ocean observation require low-frequency, broadband, high power, small size underwater acoustic transducer, but there are contradictions between the performance of the transducer, therefore a longitudinal-bending fluid-cavity coupled broadband underwater acoustic transducer is presented. The difference between the transducer and the traditional JH transducer is that the opening position of the Helmholtz resonant cavity is arranged between the radiation cover plate and the cylindrical cavity. Based on the optimization results of the finite element software ANSYS produced a transducer test prototype. The test results show that the simulation results and experimental results are basically consistent, and the transmitting voltage response can reach 136dB, the transmitting voltage response fluctuation shall no more than 6dB through the range of 700-1200Hz in the horizontal direction, verified the longitudinal-bending mode and the fluid-cavity mode of the transducer are well coupled, and the transducer is an ideal low-frequency, broadband, high power, small size underwater acoustic transducer.
2021-09-07
Schell, Oleg, Kneib, Marcel.  2020.  VALID: Voltage-Based Lightweight Intrusion Detection for the Controller Area Network. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :225–232.
The Controller Area Network (CAN), a broadcasting bus for intra-vehicle communication, does not provide any security mechanisms, although it is implemented in almost every vehicle. Attackers can exploit this issue, transmit malicious messages unnoticeably and cause severe harm. As the utilization of Message Authentication Codes (MACs) is only possible to a limited extent in resource-constrained systems, the focus is put on the development of Intrusion Detection Systems (IDSs). Due to their simple idea of operation, current developments are increasingly utilizing physical signal properties like voltages to realize these systems. Although the feasibility for CAN-based networks could be demonstrated, the least approaches consider the constrained resource-availability of vehicular hardware. To close this gap, we present Voltage-Based Lightweight Intrusion Detection (VALID), which provides physics-based intrusion detection with low resource requirements. By utilizing solely the individual voltage levels on the network during communication, the system detects unauthorized message transmissions without any sophisticated sampling approaches and feature calculations. Having performed evaluations on data from two real vehicles, we show that VALID is not only able to detect intrusions with an accuracy of 99.54 %, but additionally is capable of identifying the attack source reliably. These properties make VALID one of the most lightweight intrusion detection approaches that is ready-to-use, as it can be easily implemented on hardware already installed in vehicles and does not require any further components. Additionally, this allows existing platforms to be retrofitted and vehicular security systems to be improved and extended.