Visible to the public Biblio

Filters: Keyword is Fuels  [Clear All Filters]
2023-01-13
Ankeshwarapu, Sunil, Sydulu, Maheswarapu.  2022.  Investigation on Security Constrained Optimal Power Flows using Meta-heuristic Techniques. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP). :1—6.
In this work different Meta-heuristic Techniques have been endeavored for addressing the Security Constrained Optimal Power Flow (SCOPF) and Optimal Power Flow (OPF)problem for minimizing the total fuel cost of the system. Here four meta-heuristics i.e. Genetic Algorithm (GA), Big Bang-Big Crunch Algorithm (BBBC), Shuffled Frog Leap Algorithm (SFLA) and Jaya Algorithms (JA) have been discussed. The problem was simulated on IEEE 30 bus standard test system under MATLAB environment. The simulation results show that JA outperforms GA, SFLA, and BBBC in terms of overall cost and computational time.
2022-08-26
Gomez, Matthew R., Slutz, S.A., Jennings, C.A., Weis, M.R., Lamppa, D.C., Harvey-Thompson, A.J., Geissel, M., Awe, T.J., Chandler, G.A., Crabtree, J.A. et al..  2021.  Developing a Platform to Enable Parameter Scaling Studies in Magnetized Liner Inertial Fusion Experiments. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept that relies on fuel magnetization, laser preheat, and a magnetically driven implosion to produce fusion conditions. In MagLIF, the target is a roughly 10 mm long, 5 mm diameter, 0.5 mm thick, cylindrical beryllium shell containing 1 mg/cm 3 D 2 gas. An axial magnetic field on the order of 10 T is applied to the target, and several kJ of laser energy is deposited into the fuel. Up to 20 MA of current is driven axially through the beryllium target, causing it to implode over approximately 100 ns. The implosion produces a 100-μm diameter, 8-mm tall fuel column with a burn-averaged ion temperature of several keV, that generates 10 11 -10 13 DD neutrons.
Gomez, Matthew R., Myers, C.E., Hatch, M.W., Hutsel, B.T., Jennings, C.A., Lamppa, D.C., Lowinske, M.C., Maurer, A.J., Steiner, A.M., Tomlinson, K. et al..  2021.  Developing An Extended Convolute Post To Drive An X-Pinch For Radiography At The Z Facility. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
X-ray radiography has been used to diagnose a wide variety of experiments at the Z facility including inertial confinement fusion capsule implosions, the growth of the magneto-Rayleigh-Taylor instability in solid liners, and the development of helical structures in axially magnetized liner implosions. In these experiments, the Z Beamlet laser (1 kJ, 1 ns) was used to generate the x-ray source. An alternate x-ray source is desirable in experiments where the Z Beamlet laser is used for another purpose (e.g., preheating the fuel in magnetized liner inertial fusion experiments) or when multiple radiographic lines of sight are necessary.
Lewis, William E., Knapp, Patrick F., Slutz, Stephen A., Schmit, Paul F., Chandler, Gordon A., Gomez, Matthew R., Harvey-Thompson, Adam J., Mangan, Michael A., Ampleford, David J., Beckwith, Kristian.  2021.  Deep Learning Enabled Assessment of Magnetic Confinement in Magnetized Liner Inertial Fusion. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion (MIF) concept being studied on the Z-machine at Sandia National Laboratories. MagLIF relies on quasi-adiabatic heating of a gaseous deuterium (DD) fuel and flux compression of a background axially oriented magnetic field to achieve fusion relevant plasma conditions. The magnetic flux per fuel radial extent determines the confinement of charged fusion products and is thus of fundamental interest in understanding MagLIF performance. It was recently shown that secondary DT neutron spectra and yields are sensitive to the magnetic field conditions within the fuel, and thus provide a means by which to characterize the magnetic confinement properties of the fuel. 1 , 2 , 3 We utilize an artificial neural network to surrogate the physics model of Refs. [1] , [2] , enabling Bayesian inference of the magnetic confinement parameter for a series of MagLIF experiments that systematically vary the laser preheat energy deposited in the target. This constitutes the first ever systematic experimental study of the magnetic confinement properties as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that the fuel magnetization decreases with deposited preheat energy in a fashion consistent with Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.
2021-12-20
Petrenkov, Denis, Agafonov, Anton.  2021.  Anomaly Detection in Vehicle Platoon with Third-Order Consensus Control. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0463–0466.
The development of autonomous connected vehicles, in particular, moving as a platoon formation, has received great attention in recent years. The autonomous movement allows to increase the efficiency of the transportation infrastructure usage, reduce the fuel consumption, improve road safety, decrease traffic congestion, and others. To maintain an optimal spacing policy in a platoon formation, it is necessary to exchange information between vehicles. The Vehicular ad hoc Network (VANET) is the key component to establish wireless vehicle-to-vehicle communications. However, vehicular communications can be affected by different security threats. In this paper, we consider the third-order consensus approach as a control strategy for the vehicle platoon. We investigate several types of malicious attacks (spoofing, message falsification) and propose an anomaly detection algorithm that allows us to detect the malicious vehicle and enhance the security of the vehicle platoon. The experimental study of the proposed approach is conducted using Plexe, a vehicular network simulator that permits the realistic simulation of platooning systems.
2021-09-16
Curtis, Peter M..  2020.  Energy and Cyber Security and Its Effect on Business Resiliency. Maintaining Mission Critical Systems in a 24/7 Environment. :31–62.
It is important to address the physical and cyber security needs of critical infrastructures, including systems, facilities, and assets. Security requirements may include capabilities to prevent and protect against both physical and digital intrusion, hazards, threats, and incidents, and to expeditiously recover and reconstitute critical services. Energy security has serious repercussions for mission critical facilities. Mission critical facilities do not have the luxury of being able to shut down or run at a reduced capacity during outages, whether they last minutes, hours, or days. Disaster recovery plans are a necessity for mission critical facilities, involving the proper training of business continuity personnel to enact enterprise-level plans for business resiliency. Steps need to be taken to improve information security and mitigate the threat of cyber-attacks. The Smart Grid is the convergence of electric distribution systems and modern digital information technology.