Visible to the public Biblio

Filters: Keyword is Passive RFID tags  [Clear All Filters]
2022-05-10
Lu, Shouqin, Li, Xiangxue.  2021.  Lightweight Grouping-Proof for Post-Quantum RFID Security. 2021 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI). :49–58.
A grouping-proof protocol aims to generate an evidence that two or more RFID (Radio Frequency Identification) tags in a group are coexistent, which has been widely deployed in practical scenarios, such as healthcare, supply-chain management, and so on. However, existing grouping-proof protocols have many issues in security and efficiency, either incompatible with EPCglobal Class-1 Generation-2 (C1G2) standard, or vulnerable to different attacks. In this paper, we propose a lightweight grouping-proof protocol which only utilizes bitwise operations (AND, XOR) and 128-bit pseudorandom number generator (PRNG). 2-round interactions between the reader and the tags allow them to cooperate on fast authentication in parallel mode where the reader broadcasts its round messages rather than hang on for the prior tag and then fabricate apposite output for the next tag consecutively. Our design enables the reader to aggregate the first round proofs (to bind the membership of tags in the same group) generated by the tags to an authenticator of constant size (independent of the number of tags) that can then be used by the tags to generate the second round proofs (and that will be validated by the verifier). Formal security (i.e., PPT adversary cannot counterfeit valid grouping-proof that can be accepted by any verifier) of the proposed protocol relies on the hardness of the learning parity with noise (LPN) problem, which can resist against quantum computing attacks. Other appealing features (e.g., robustness, anonymity, etc.) are also inspected. Performance evaluation shows its applicability to C1G2 RFID.
2022-02-04
Salman, Amy Hamidah, Adiono, Trio, Abdurrahman, Imran, Aditya, Yudi, Chandra, Zefanya.  2021.  Aircraft Passenger Baggage Handling System with RFID Technology. 2021 International Symposium on Electronics and Smart Devices (ISESD). :1—5.
The mishandled passenger baggage in aviation industry is still a big problem. This research is focused on designing a baggage handling system (BHS) at the airport for identifying and tracking of passenger baggage based on RFID technology. The proposed BHS system consists of hardware device to identify the baggage and the cloud-based tracking application. The BHS device is designed based on UHF passive RFID technology and IoT technology. The device can be used as handheld device in check-in counter and arrival area. The device can also be used as a fixed device in screening, sortation, and transition belt conveyer. The BHS device consists of RFID reader module, a microcontroller, LCD, keypad, a WiFi module and a storage device. The user and airport staff can track the luggage position and its status through dashboard application.
2021-09-16
Ayoub, Ahmed A., Aagaard, Mark D..  2020.  Application-Specific Instruction Set Architecture for an Ultralight Hardware Security Module. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :69–79.
Due to the rapid growth of using Internet of Things (IoT) devices in the daily life, the need to achieve an acceptable level of security and privacy according to the real security risks for these devices is rising. Security risks may include privacy threats like gaining sensitive information from a device, and authentication problems from counterfeit or cloned devices. It becomes more challenging to add strong security features to extremely constrained devices compared to battery operated devices that have more computational and storage capabilities. We propose a novel application specific instruction-set architecture that allows flexibility on many design levels and achieves the required security level for the Electronic Product Code (EPC) passive Radio Frequency Identification (RFID) tag device. Our solution moves a major design effort from hardware to software, which largely reduces the final unit cost. The proposed architecture can be implemented with 4,662 gate equivalent units (GEs) for 65 nm CMOS technology excluding the memory and the cryptographic units. The synthesis results fulfill the requirements of extremely constrained devices and allow the inclusion of cryptographic units into the datapath of the proposed application-specific instruction set processor (ASIP).
Asci, Cihan, Wang, Wei, Sonkusale, Sameer.  2020.  Security Monitoring System Using Magnetically-Activated RFID Tags. 2020 IEEE SENSORS. :1–4.
Existing methods for home security monitoring depend on expensive custom battery-powered solutions. In this article, we present a battery-free solution that leverages any off-the-shelf passive radio frequency identification (RFID) tag for real-time entry detection. Sensor consists of a printed RFID antenna on paper, coupled to a magnetic reed switch and is affixed on the door. Opening of the door triggers the reed switch causing RFID signal transmission detected by any off-the-shelf passive RFID reader. This paper shows simulation and experimental results for such magnetically-actuated RFID (or magRFID) opening sensor.