Biblio
Filters: Keyword is HSM [Clear All Filters]
velink - A Blockchain-based Shared Mobility Platform for Private and Commercial Vehicles utilizing ERC-721 Tokens. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :62—67.
.
2021. Transportation of people and goods is important and crucial in the context of smart cities. The trend in regard of people's mobility is moving from privately owned vehicles towards shared mobility. This trend is even stronger in urban areas, where space for parking is limited, and the mobility is supported by the public transport system, which lowers the need for private vehicles. Several challenges and barriers of currently available solutions retard a massive growth of this mobility option, such as the trust problem, data monopolism, or intermediary costs. Decentralizing mobility management is a promising approach to solve the current problems of the mobility market, allowing to move towards a more usable internet of mobility and smart transportation. Leveraging blockchain technology allows to cut intermediary costs, by utilizing smart contracts. Important in this ecosystem is the proof of identity of participants in the blockchain network. To proof the possession of the claimed identity, the private key corresponding to the wallet address is utilized, and therefore essential to protect. In this paper, a blockchain-based shared mobility platform is proposed and a proof-of-concept is shown. First, current problems and state-of-the-art systems are analyzed. Then, a decentralized concept is built based on ERC-721 tokens, implemented in a smart contract, and augmented with a Hardware Security Module (HSM) to protect the confidential key material. Finally, the system is evaluated and compared against state-of-the-art solutions.
Application-Specific Instruction Set Architecture for an Ultralight Hardware Security Module. 2020 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :69–79.
.
2020. Due to the rapid growth of using Internet of Things (IoT) devices in the daily life, the need to achieve an acceptable level of security and privacy according to the real security risks for these devices is rising. Security risks may include privacy threats like gaining sensitive information from a device, and authentication problems from counterfeit or cloned devices. It becomes more challenging to add strong security features to extremely constrained devices compared to battery operated devices that have more computational and storage capabilities. We propose a novel application specific instruction-set architecture that allows flexibility on many design levels and achieves the required security level for the Electronic Product Code (EPC) passive Radio Frequency Identification (RFID) tag device. Our solution moves a major design effort from hardware to software, which largely reduces the final unit cost. The proposed architecture can be implemented with 4,662 gate equivalent units (GEs) for 65 nm CMOS technology excluding the memory and the cryptographic units. The synthesis results fulfill the requirements of extremely constrained devices and allow the inclusion of cryptographic units into the datapath of the proposed application-specific instruction set processor (ASIP).