Visible to the public Biblio

Filters: Keyword is Application program interface  [Clear All Filters]
2022-01-10
M, Babu, R, Hemchandhar, D, Harish Y., S, Akash, K, Abhishek Todi.  2021.  Voice Prescription with End-to-End Security Enhancements. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :1–8.

The recent analysis indicates more than 250,000 people in the United States of America (USA) die every year because of medical errors. World Health Organisation (WHO) reports states that 2.6 million deaths occur due to medical and its prescription errors. Many of the errors related to the wrong drug/dosage administration by caregivers to patients due to indecipherable handwritings, drug interactions, confusing drug names, etc. The espousal of Mobile-based speech recognition applications will eliminate the errors. This allows physicians to narrate the prescription instead of writing. The application can be accessed through smartphones and can be used easily by everyone. An application program interface has been created for handling requests. Natural language processing is used to read text, interpret and determine the important words for generating prescriptions. The patient data is stored and used according to the Health Insurance Portability and Accountability Act of 1996 (HIPAA) guidelines. The SMS4-BSK encryption scheme is used to provide the data transmission securely over Wireless LAN.

2021-12-20
Baye, Gaspard, Hussain, Fatima, Oracevic, Alma, Hussain, Rasheed, Ahsan Kazmi, S.M..  2021.  API Security in Large Enterprises: Leveraging Machine Learning for Anomaly Detection. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Large enterprises offer thousands of micro-services applications to support their daily business activities by using Application Programming Interfaces (APIs). These applications generate huge amounts of traffic via millions of API calls every day, which is difficult to analyze for detecting any potential abnormal behaviour and application outage. This phenomenon makes Machine Learning (ML) a natural choice to leverage and analyze the API traffic and obtain intelligent predictions. This paper proposes an ML-based technique to detect and classify API traffic based on specific features like bandwidth and number of requests per token. We employ a Support Vector Machine (SVM) as a binary classifier to classify the abnormal API traffic using its linear kernel. Due to the scarcity of the API dataset, we created a synthetic dataset inspired by the real-world API dataset. Then we used the Gaussian distribution outlier detection technique to create a training labeled dataset simulating real-world API logs data which we used to train the SVM classifier. Furthermore, to find a trade-off between accuracy and false positives, we aim at finding the optimal value of the error term (C) of the classifier. The proposed anomaly detection method can be used in a plug and play manner, and fits into the existing micro-service architecture with little adjustments in order to provide accurate results in a fast and reliable way. Our results demonstrate that the proposed method achieves an F1-score of 0.964 in detecting anomalies in API traffic with a 7.3% of false positives rate.
Singleton, Larry, Zhao, Rui, Siy, Harvey, Song, Myoungkyu.  2021.  FireBugs: Finding and Repairing Cryptography API Misuses in Mobile Applications. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1194–1201.
In this paper, we present FireBugs for Finding and Repairing Bugs based on security patterns. For the common misuse patterns of cryptography APIs (crypto APIs), we encode common cryptography rules into the pattern representations for bug detection and program repair regarding cryptography rule violations. In the evaluation, we conducted a case study to assess the bug detection capability by applying FireBugs to datasets mined from both open source and commercial projects. Also, we conducted a user study with professional software engineers at Mutual of Omaha Insurance Company to estimate the program repair capability. This evaluation showed that FireBugs can help professional engineers develop various cryptographic requirements in a resilient application.
Piccolboni, Luca, Guglielmo, Giuseppe Di, Carloni, Luca P., Sethumadhavan, Simha.  2021.  CRYLOGGER: Detecting Crypto Misuses Dynamically. 2021 IEEE Symposium on Security and Privacy (SP). :1972–1989.
Cryptographic (crypto) algorithms are the essential ingredients of all secure systems: crypto hash functions and encryption algorithms, for example, can guarantee properties such as integrity and confidentiality. Developers, however, can misuse the application programming interfaces (API) of such algorithms by using constant keys and weak passwords. This paper presents CRYLOGGER, the first open-source tool to detect crypto misuses dynamically. CRYLOGGER logs the parameters that are passed to the crypto APIs during the execution and checks their legitimacy offline by using a list of crypto rules. We compared CRYLOGGER with CryptoGuard, one of the most effective static tools to detect crypto misuses. We show that our tool complements the results of CryptoGuard, making the case for combining static and dynamic approaches. We analyzed 1780 popular Android apps downloaded from the Google Play Store to show that CRYLOGGER can detect crypto misuses on thousands of apps dynamically and automatically. We reverse-engineered 28 Android apps and confirmed the issues flagged by CRYLOGGER. We also disclosed the most critical vulnerabilities to app developers and collected their feedback.
Sun, Jingxue, Huang, Zhiqiu, Yang, Ting, Wang, Wengjie, Zhang, Yuqing.  2021.  A System for Detecting Third-Party Tracking through the Combination of Dynamic Analysis and Static Analysis. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
With the continuous development of Internet technology, people pay more and more attention to private security. In particular, third-party tracking is a major factor affecting privacy security. So far, the most effective way to prevent third-party tracking is to create a blacklist. However, blacklist generation and maintenance need to be carried out manually which is inefficient and difficult to maintain. In order to generate blacklists more quickly and accurately in this era of big data, this paper proposes a machine learning system MFTrackerDetector against third-party tracking. The system is based on the theory of structural hole and only detects third-party trackers. The system consists of two subsystems, DMTrackerDetector and DFTrackerDetector. DMTrackerDetector is a JavaScript-based subsystem and DFTrackerDetector is a Flash-based subsystem. Because tracking code and non-tracking code often call different APIs, DMTrackerDetector builds a classifier using all the APIs in JavaScript as features and extracts the API features in JavaScript through dynamic analysis. Unlike static analysis method, the dynamic analysis method can effectively avoid code obfuscation. DMTrackerDetector eventually generates a JavaScript-based third-party tracker list named Jlist. DFTrackerDetector constructs a classifier using all the APIs in ActionScript as features and extracts the API features in the flash script through static analysis. DFTrackerDetector finally generates a Flash-based third-party tracker list named Flist. DFTrackerDetector achieved 92.98% accuracy in the Flash test set and DMTrackerDetector achieved 90.79% accuracy in the JavaScript test set. MFTrackerDetector eventually generates a list of third-party trackers, which is a combination of Jlist and Flist.
A, Sujan Reddy, Rudra, Bhawana.  2021.  Evaluation of Recurrent Neural Networks for Detecting Injections in API Requests. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0936–0941.
Application programming interfaces (APIs) are a vital part of every online business. APIs are responsible for transferring data across systems within a company or to the users through the web or mobile applications. Security is a concern for any public-facing application. The objective of this study is to analyze incoming requests to a target API and flag any malicious activity. This paper proposes a solution using sequence models to identify whether or not an API request has SQL, XML, JSON, and other types of malicious injections. We also propose a novel heuristic procedure that minimizes the number of false positives. False positives are the valid API requests that are misclassified as malicious by the model.
Ferreira, Gabriel, Jia, Limin, Sunshine, Joshua, Kästner, Christian.  2021.  Containing Malicious Package Updates in Npm with a Lightweight Permission System. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1334–1346.
The large amount of third-party packages available in fast-moving software ecosystems, such as Node.js/npm, enables attackers to compromise applications by pushing malicious updates to their package dependencies. Studying the npm repository, we observed that many packages in the npm repository that are used in Node.js applications perform only simple computations and do not need access to filesystem or network APIs. This offers the opportunity to enforce least-privilege design per package, protecting applications and package dependencies from malicious updates. We propose a lightweight permission system that protects Node.js applications by enforcing package permissions at runtime. We discuss the design space of solutions and show that our system makes a large number of packages much harder to be exploited, almost for free.
Baby, Ann, Shilpa, Philomine.  2021.  An Integrated Web-Based Approach for Security Enhancement by Identification and Prevention of Scam Websites. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :38–43.
Scam websites or illegitimate internet portals are widely used to mislead users into fraud or malicious attacks, which may involve compromise of vital information. Scammers misuse the secrecy and anonymity of the internet of facade their true identity and purposes behind numerous disguises. These can include false security alerts, information betrayal, and other misleading presentations to give the impression of legality and lawfulness. The proposed research is a web-based application - Scam Website Analyser- which enables checking whether a website is a scammed one.. The main aim of the research is to improve security and prevent scams of public websites. It ensures maintaining the details of scam websites in a database and also requests the websites of other databases using external APIs. The basic idea behind the research is the concept of user -orienteers where the user is able to get information about scam websites and prevent themselves from using those sites in future.
Wang, Pei, Bangert, Julian, Kern, Christoph.  2021.  If It's Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-Scale Web Development with API Hardening. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1360–1372.
With tons of efforts spent on its mitigation, Cross-site scripting (XSS) remains one of the most prevalent security threats on the internet. Decades of exploitation and remediation demonstrated that code inspection and testing alone does not eliminate XSS vulnerabilities in complex web applications with a high degree of confidence. This paper introduces Google's secure-by-design engineering paradigm that effectively prevents DOM-based XSS vulnerabilities in large-scale web development. Our approach, named API hardening, enforces a series of company-wide secure coding practices. We provide a set of secure APIs to replace native DOM APIs that are prone to XSS vulnerabilities. Through a combination of type contracts and appropriate validation and escaping, the secure APIs ensure that applications based thereon are free of XSS vulnerabilities. We deploy a simple yet capable compile-time checker to guarantee that developers exclusively use our hardened APIs to interact with the DOM. We make various of efforts to scale this approach to tens of thousands of engineers without significant productivity impact. By offering rigorous tooling and consultant support, we help developers adopt the secure coding practices as seamlessly as possible. We present empirical results showing how API hardening has helped reduce the occurrences of XSS vulnerabilities in Google's enormous code base over the course of two-year deployment.
Wang, Pei, Guðmundsson, Bjarki Ágúst, Kotowicz, Krzysztof.  2021.  Adopting Trusted Types in ProductionWeb Frameworks to Prevent DOM-Based Cross-Site Scripting: A Case Study. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :60–73.
Cross-site scripting (XSS) is a common security vulnerability found in web applications. DOM-based XSS, one of the variants, is becoming particularly more prevalent with the boom of single-page applications where most of the UI changes are achieved by modifying the DOM through in-browser scripting. It is very easy for developers to introduce XSS vulnerabilities into web applications since there are many ways for user-controlled, unsanitized input to flow into a Web API and get interpreted as HTML markup and JavaScript code. An emerging Web API proposal called Trusted Types aims to prevent DOM XSS by making Web APIs secure by default. Different from other XSS mitigations that mostly focus on post-development protection, Trusted Types direct developers to write XSS-free code in the first place. A common concern when adopting a new security mechanism is how much effort is required to refactor existing code bases. In this paper, we report a case study on adopting Trusted Types in a well-established web framework. Our experience can help the web community better understand the benefits of making web applications compatible with Trusted Types, while also getting to know the related challenges and resolutions. We focused our work on Angular, which is one of the most popular web development frameworks available on the market.
Vadlamani, Aparna, Kalicheti, Rishitha, Chimalakonda, Sridhar.  2021.  APIScanner - Towards Automated Detection of Deprecated APIs in Python Libraries. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :5–8.
Python libraries are widely used for machine learning and scientific computing tasks today. APIs in Python libraries are deprecated due to feature enhancements and bug fixes in the same way as in other languages. These deprecated APIs are discouraged from being used in further software development. Manually detecting and replacing deprecated APIs is a tedious and time-consuming task due to the large number of API calls used in the projects. Moreover, the lack of proper documentation for these deprecated APIs makes the task challenging. To address this challenge, we propose an algorithm and a tool APIScanner that automatically detects deprecated APIs in Python libraries. This algorithm parses the source code of the libraries using abstract syntax tree (ASTs) and identifies the deprecated APIs via decorator, hard-coded warning or comments. APIScanner is a Visual Studio Code Extension that highlights and warns the developer on the use of deprecated API elements while writing the source code. The tool can help developers to avoid using deprecated API elements without the execution of code. We tested our algorithm and tool on six popular Python libraries, which detected 838 of 871 deprecated API elements. Demo of APIScanner: https://youtu.be/1hy\_ugf-iek. Documentation, tool, and source code can be found here: https://rishitha957.github.io/APIScanner.
2021-09-21
Mohanasruthi, V., Chakraborty, Abhishek, Thanudas, B., Sreelal, S., Manoj, B. S..  2020.  An Efficient Malware Detection Technique Using Complex Network-Based Approach. 2020 National Conference on Communications (NCC). :1–6.
System security is becoming an indispensable part of our daily life due to the rapid proliferation of unknown malware attacks. Recent malware found to have a very complicated structure that is hard to detect by the traditional malware detection techniques such as antivirus, intrusion detection systems, and network scanners. In this paper, we propose a complex network-based malware detection technique, Malware Detection using Complex Network (MDCN), that considers Application Program Interface Call Transition Matrix (API-CTM) to generate complex network topology and then extracts various feature set by analyzing different metrics of the complex network to distinguish malware and benign applications. The generated feature set is then sent to several machine learning classifiers, which include naive-Bayes, support vector machine, random forest, and multilayer perceptron, to comparatively analyze the performance of MDCN-based technique. The analysis reveals that MDCN shows higher accuracy, with lower false-positive cases, when the multilayer perceptron-based classifier is used for the detection of malware. MDCN technique can efficiently be deployed in the design of an integrated enterprise network security system.