Biblio
The analysis of security-related event logs is an important step for the investigation of cyber-attacks. It allows tracing malicious activities and lets a security operator find out what has happened. However, since IT landscapes are growing in size and diversity, the amount of events and their highly different representations are becoming a Big Data challenge. Unfortunately, current solutions for the analysis of security-related events, so called Security Information and Event Management (SIEM) systems, are not able to keep up with the load. In this work, we propose a distributed SIEM platform that makes use of highly efficient distributed normalization and persists event data into an in-memory database. We implement the normalization on common distribution frameworks, i.e. Spark, Storm, Trident and Heron, and compare their performance with our custom-built distribution solution. Additionally, different tuning options are introduced and their speed advantage is presented. In the end, we show how the writing into an in-memory database can be tuned to achieve optimal persistence speed. Using the proposed approach, we are able to not only fully normalize, but also persist more than 20 billion events per day with relatively small client hardware. Therefore, we are confident that our approach can handle the load of events in even very large IT landscapes.
Cloud Computing represents one of the most significant shifts in information technology and it enables to provide cloud-based security service such as Security-as-a-service (SECaaS). Improving of the cloud computing technologies, the traditional SIEM paradigm is able to shift to cloud-based security services. In this paper, we propose the SIEM architecture that can be deployed to the SECaaS platform which we have been developing for analyzing and recognizing intelligent cyber-threat based on virtualization technologies.
The paper suggests several techniques for computer network risk assessment based on Common Vulnerability Scoring System (CVSS) and attack modeling. Techniques use a set of integrated security metrics and consider input data from security information and event management (SIEM) systems. Risk assessment techniques differ according to the used input data. They allow to get risk assessment considering requirements to the accuracy and efficiency. Input data includes network characteristics, attacks, attacker characteristics, security events and countermeasures. The tool that implements these techniques is presented. Experiments demonstrate operation of the techniques for different security situations.
To assure cyber security of an enterprise, typically SIEM (Security Information and Event Management) system is in place to normalize security events from different preventive technologies and flag alerts. Analysts in the security operation center (SOC) investigate the alerts to decide if it is truly malicious or not. However, generally the number of alerts is overwhelming with majority of them being false positive and exceeding the SOC's capacity to handle all alerts. Because of this, potential malicious attacks and compromised hosts may be missed. Machine learning is a viable approach to reduce the false positive rate and improve the productivity of SOC analysts. In this paper, we develop a user-centric machine learning framework for the cyber security operation center in real enterprise environment. We discuss the typical data sources in SOC, their work flow, and how to leverage and process these data sets to build an effective machine learning system. The paper is targeted towards two groups of readers. The first group is data scientists or machine learning researchers who do not have cyber security domain knowledge but want to build machine learning systems for security operations center. The second group of audiences are those cyber security practitioners who have deep knowledge and expertise in cyber security, but do not have machine learning experiences and wish to build one by themselves. Throughout the paper, we use the system we built in the Symantec SOC production environment as an example to demonstrate the complete steps from data collection, label creation, feature engineering, machine learning algorithm selection, model performance evaluations, to risk score generation.
In a world where highly skilled actors involved in cyber-attacks are constantly increasing and where the associated underground market continues to expand, organizations should adapt their defence strategy and improve consequently their security incident management. In this paper, we give an overview of Advanced Persistent Threats (APT) attacks life cycle as defined by security experts. We introduce our own compiled life cycle model guided by attackers objectives instead of their actions. Challenges and opportunities related to the specific camouflage actions performed at the end of each APT phase of the model are highlighted. We also give an overview of new APT protection technologies and discuss their effectiveness at each one of life cycle phases.
We present a novel Cyber Security analytics framework. We demonstrate a comprehensive cyber security monitoring system to construct cyber security correlated events with feature selection to anticipate behaviour based on various sensors.
A system implementing real-time situational awareness through discovery, prevention, detection, response, audit, and management capabilities is seen as central to facilitating the protection of critical infrastructure systems. The effectiveness of providing such awareness technologies for electrical distribution companies is being evaluated in a series of field trials: (i) Substation Intrusion Detection / Prevention System (IDPS) and (ii) Security Information and Event Management (SIEM) System. These trials will help create a realistic case study on the effectiveness of such technologies with the view of forming a framework for critical infrastructure cyber security defense systems of the future.