Visible to the public Biblio

Filters: Keyword is Sequential Linear Programming  [Clear All Filters]
2021-10-04
Zhong, Chiyang, Sakis Meliopoulos, A. P., AlOwaifeer, Maad, Xie, Jiahao, Ilunga, Gad.  2020.  Object-Oriented Security Constrained Quadratic Optimal Power Flow. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Increased penetration of distributed energy resources (DERs) creates challenges in formulating the security constrained optimal power flow (SCOPF) problem as the number of models for these resources proliferate. Specifically, the number of devices with different mathematical models is large and their integration into the SCOPF becomes tedious. Henceforth, a process that seamlessly models and integrates such new devices into the SCOPF problem is needed. We propose an object-oriented modeling approach that leads to the autonomous formation of the SCOPF problem. All device models in the system are cast into a universal syntax. We have also introduced a quadratization method which makes the models consisting of linear and quadratic equations, if nonlinear. We refer to this model as the State and Control Quadratized Device Model (SCQDM). The SCQDM includes a number of equations and a number of inequalities expressing the operating limits of the device. The SCOPF problem is then formed in a seamless manner by operating only on the SCQDM device objects. The SCOPF problem, formed this way, is also quadratic (i.e. consists of linear and quadratic equations), and of the same form and syntax as the SCQDM for an individual device. For this reason, we named it security constrained quadratic optimal power flow (SCQOPF). We solve the SCQOPF problem using a sequential linear programming (SLP) algorithm and compare the results with those obtained from the commercial solver Knitro on the IEEE 57 bus system.