Biblio
In previous multi-authority key-policy attribute-based Encryption (KP-ABE) schemes, either a super power central authority (CA) exists, or multiple attribute authorities (AAs) must collaborate in initializing the system. In addition, those schemes are proved security in the selective model. In this paper, we propose a new fully secure decentralized KP-ABE scheme, where no CA exists and there is no cooperation between any AAs. To become an AA, a participant needs to create and publish its public parameters. All the user's private keys will be linked with his unique global identifier (GID). The proposed scheme supports any monotonic access structure which can be expressed by a linear secret sharing scheme (LSSS). We prove the full security of our scheme in the standard model. Our scheme is also secure against at most F-1 AAs corruption, where F is the number of AAs in the system. The efficiency of our scheme is almost as well as that of the underlying fully secure single-authority KP-ABE system.
With the rapid development of mobile internet, mobile devices are requiring more complex authorization policy to ensure an secure access control on mobile data. However mobiles have limited resources (computing, storage, etc.) and are not suitable to execute complex operations. Cloud computing is an increasingly popular paradigm for accessing powerful computing resources. Intuitively we can solve that problem by moving the complex access control process to the cloud and implement a fine-grained access control relying on the powerful cloud. However the cloud computation may not be trusted, a crucial problem is how to verify the correctness of such computations. In this paper, we proposed a public verifiable cloud access control scheme based on Parno's public verifiable computation protocol. For the first time, we proposed the conception and concrete construction of verifiable cloud access control. Specifically, we firstly design a user private key revocable Key Policy Attribute Based Encryption (KP-ABE) scheme with non-monotonic access structure, which can be combined with the XACML policy perfectly. Secondly we convert the XACML policy into the access structure of KP-ABE. Finally we construct a security provable public verifiable cloud access control scheme based on the KP-ABE scheme we designed.
This paper proposes a generic SATCOM control loop in a generic multivector structure to facilitate predictive analysis for achieving resiliency under time varying circumstances. The control loop provides strategies and actions in the context of game theory to optimize the resources for SATCOM networks. Details of the theoretic game and resources optimization approaches are discussed in the paper.
Securing Cyber-Physical Systems (CPS) against cyber-attacks is challenging due to the wide range of possible attacks - from stealthy ones that seek to manipulate/drop/delay control and measurement signals to malware that infects host machines that control the physical process. This has prompted the research community to address this problem through developing targeted methods that protect and check the run-time operation of the CPS. Since protecting signals and checking for errors result in performance penalties, they must be performed within the delay bounds dictated by the control loop. Due to the large number of potential checks that can be performed, coupled with various degrees of their effectiveness to detect a wide range of attacks, strategic assignment of these checks in the control loop is a critical endeavor. To that end, this paper presents a coherent runtime framework - which we coin BLOC - for orchestrating the CPS with check blocks to secure them against cyber attacks. BLOC capitalizes on game theoretical techniques to enable the defender to find an optimal randomized use of check blocks to secure the CPS while respecting the control-loop constraints. We develop a Stackelberg game model for stateless blocks and a Markov game model for stateful ones and derive optimal policies that minimize the worst-case damage from rational adversaries. We validate our models through extensive simulations as well as a real implementation for a HVAC system.
The reliability of nuclear command, control and communications has long been identified as a critical component of the strategic stability among nuclear states. Advances in offensive cyber weaponry have the potential to negatively impact this reliability, threatening strategic stability. In this paper we present a game theoretic model of preemptive cyber attacks against nuclear command, control and communications. The model is a modification of the classic two-player game of Chicken, a standard game theoretic model for nuclear brinksmanship. We fully characterize equilibria in both the complete information game and two distinct two-sided incomplete information games. We show that when both players have advanced cyber capabilities conflict is more likely in equilibrium, regardless of information structure. On the other hand, when at most one player has advanced cyber capabilities, strategic stability depends on the information structure. Under complete information, asymmetric cyber capabilities have a stabilizing effect in which the player with strong cyber has the resolve to stand firm in equilibrium. Under incomplete information, asymmetric cyber capabilities can have both stabilizing and destabilizing effects depending on prior beliefs over opponent cyber capabilities.
This paper presents a novel game theoretic attack-defence decision making framework for cyber-physical system (CPS) security. Game theory is a powerful tool to analyse the interaction between the attacker and the defender in such scenarios. In the formulation of games, participants are usually assumed to be rational. They will always choose the action to pursuit maximum payoff according to the knowledge of the strategic situation they are in. However, in reality the capacity of rationality is often bounded by the level of intelligence, computational resources and the amount of available information. This paper formulates the concept of bounded rationality into the decision making process, in order to optimise the defender's strategy considering that the defender and the attacker have incomplete information of each other and limited computational capacity. Under the proposed framework, the defender can often benefit from deviating from the minimax Nash Equilibrium strategy, the theoretically expected outcome of rational game playing. Numerical results are presented and discussed in order to demonstrate the proposed technique.
This work presents the design and implementation of a large curved display system in a virtual reality (VR) environment that supports visualization of 2D datasets (e.g., images, buttons and text). By using this system, users are allowed to interact with data in front of a wide field of view and gain a high level of perceived immersion. We exhibit two use cases of this system, including (1) a virtual image wall as the display component of a 3D user interface, and (2) an inventory interface for a VR-based educational game. The use cases demonstrate capability and flexibility of curved displays in supporting varied purposes of data interaction within virtual environments.
Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.
The method of assessment of degree of compliance of divisions of the complex distributed corporate information system to a number of information security indicators is offered. As a result of the methodology implementation a comparative assessment of compliance level of each of the divisions for the corporate information security policy requirements may be given. This assessment may be used for the purpose of further decision-making by the management of the corporation on measures to minimize risks as a result of possible implementation of threats to information security.
Agile methods frequently have difficulties with qualities, often specifying quality requirements as stories, e.g., "As a user, I need a safe and secure system." Such projects will generally schedule some capability releases followed by safety and security releases, only to discover user-developer misunderstandings and unsecurable agile code, leading to project failure. Very large agile projects also have further difficulties with project velocity and scalability. Examples are trying to use daily standup meetings, 2-week sprints, shared tacit knowledge vs. documents, and dealing with user-developer misunderstandings. At USC, our Parallel Agile, Executable Architecture research project shows some success at mid-scale (50 developers). We also examined several large (hundreds of developers) TRW projects that had succeeded with rapid, high-quality development. The paper elaborates on their common Critical Quality Factors: a concurrent 3-team approach, an empowered Keeper of the Project Vision, and a management approach emphasizing qualities.
With the ever so growing boundaries for security in the cloud, it is necessary to develop ways to prevent from total cloud server failure. In this paper, we try to design a Game Strategy Block that sets up rules for security based on a tower defence game to secure the hypervisor from potential threats. We also try to define a utility function named the Virtual Machine Vitality Measure (VMVM) that could enlighten on the status of the virtual machines on the virtual environment.