Biblio
This study focuses on the spatial context of hacking to networks of Honey-pots. We investigate the relationship between topological positions and geographic positions of victimized computers and system trespassers. We've deployed research Honeypots on the computer networks of two academic institutions, collected information on successful brute force attacks (BFA) and system trespassing events (sessions), and used Social Network Analysis (SNA) techniques, to depict and understand the correlation between spatial attributes (IP addresses) and hacking networks' topology. We mapped and explored hacking patterns and found that geography might set the behavior of the attackers as well as the topology of hacking networks. The contribution of this study stems from the fact that there are no prior studies of geographical influences on the topology of hacking networks and from the unique usage of SNA to investigate hacking activities. Looking ahead, our study can assist policymakers in forming effective policies in the field of cybercrime.
Cover time measures the time (or number of steps) required for a mobile agent to visit each node in a network (graph) at least once. A short cover time is important for search or foraging applications that require mobile agents to quickly inspect or monitor nodes in a network, such as providing situational awareness or security. Speed can be achieved if details about the graph are known or if the agent maintains a history of visited nodes, however, these requirements may not be feasible for agents with limited resources, they are difficult in dynamic graph topologies, and they do not easily scale to large networks. This paper introduces a set-based form of heading (directional bias) that allows an agent to more efficiently explore any connected graph, static or dynamic. When deciding the next node to visit, agents are discouraged from visiting nodes that neighbor both their previous and current locations. Modifying a traditional movement method, e.g., random walk, with this concept encourages an agent to move toward nodes that are less likely to have been previously visited, reducing cover time. Simulation results with grid, scale-free, and minimum distance graphs demonstrate heading can consistently reduce cover time as compared to non-heading movement techniques.