Biblio
Filters: Keyword is Multilayer structure [Clear All Filters]
Effect of multilayer structure on energy storage characteristics of PVDF ferroelectric polymer. 2022 4th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP). :582–586.
.
2022. Dielectric capacitors have attracted attention as energy storage devices that can achieve rapid charge and discharge. But the key to restricting its development is the low energy storage density of dielectric materials. Polyvinylidene fluoride (PVDF), as a polymer with high dielectric properties, is expected to improve the energy storage density of dielectric materials. In this work, the multilayer structure of PVDF ferroelectric polymer is designed, and the influence of the number of layers on the maximum polarization, remanent polarization, applied electric field and energy storage density of the dielectric material is studied. The final obtained double-layer PVDF obtained a discharge energy storage density of 10.6 J/cm3 and an efficiency of 49.1% at an electric field of 410 kV/mm; the three-layer PVDF obtained a discharge energy storage density of 11.0 J/cm3 and an efficiency of 37.2% at an electric field of 440 kV/mm.
Theorectical Optimazation of Surface Acoustic Waves Resonator Based on 30° Y-Cut Linbo3/SIO2/SI Multilayered Structure. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :555–559.
.
2021. Surface acoustic wave devices based on LiNbO3/interlayer/substrate layered structure have attracted great attention due to the high electromechanical coupling coefficient (K2) of LiNbO3 and the energy confinement effect of the layered structure. In this study, 30° YX-LiNbO3 (LN)/SiO2/Si multilayered structure, which can excited shear-horizontal surface acoustic wave (SH-SAW) with high K2, was proposed. The optimized orientation of LiNbO3 was verified by the effective permittivity method based on the stiffness matrix. The phase velocity, K2 value, and temperature coefficient of frequency (TCF) of the SH-SAW were calculated as a function of the LiNbO3 thickness at different thicknesses of the SiO2 in 30° YX-LiNbO3/SiO2/Si multilayer structure by finite element method (FEM). The results show that the optimized LiNbO3 thickness is 0.1 and the optimized SiO2 thickness is 0.2λ. The optimized Al electrode thickness and metallization ratio are 0.07 and 0.4, respectively. The K2 of the SH-SAW is 29.89%, the corresponding phase velocity is 3624.00 m/s and TCF is about 10 ppm/°C with the optimized IDT/30° YX-LiNbO3/SiO2/Si layered structure.