Visible to the public Biblio

Filters: Keyword is Shear-horizontal surface acoustic wave  [Clear All Filters]
2022-12-07
Suzuki, Ryoto, Suzuki, Masashi, Kakio, Shoji, Kimura, Noritoshi.  2022.  Shear-Horizontal Surface Acoustic Wave on Ca3TaGa3Si2O14 Piezoelectric Single Crystal. 2022 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—2.
SummaryIn this study, the propagation and resonance properties of shear-horizontal surface acoustic waves (SH SAWs) on a rotated Y-cut 90°X propagating Ca3TaGa3Si2O14 (CTGS) with a Au- or Al-interdigital transducer (IDT) were investigated theoretically and experimentally. It was found that not only a high-density Au-IDT but also a conventional Al-IDT enables the energy trapping of SH SAW in the vicinity of the surface. For both IDTs, the effective electromechanical coupling factor of about 1.2% and the zero temperature coefficient of frequency can be simultaneously obtained by adjusting the cut angle of CTGS and the electrode film thickness.
2021-11-29
WANG, Yuan-yuan, LI, Cui-ping, MA, Jun, Yan, Xiao-peng, QIAN, Li-rong, Yang, Bao-he, TIAN, Ya-hui, LI, Hong-lang.  2021.  Theorectical Optimazation of Surface Acoustic Waves Resonator Based on 30° Y-Cut Linbo3/SIO2/SI Multilayered Structure. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :555–559.
Surface acoustic wave devices based on LiNbO3/interlayer/substrate layered structure have attracted great attention due to the high electromechanical coupling coefficient (K2) of LiNbO3 and the energy confinement effect of the layered structure. In this study, 30° YX-LiNbO3 (LN)/SiO2/Si multilayered structure, which can excited shear-horizontal surface acoustic wave (SH-SAW) with high K2, was proposed. The optimized orientation of LiNbO3 was verified by the effective permittivity method based on the stiffness matrix. The phase velocity, K2 value, and temperature coefficient of frequency (TCF) of the SH-SAW were calculated as a function of the LiNbO3 thickness at different thicknesses of the SiO2 in 30° YX-LiNbO3/SiO2/Si multilayer structure by finite element method (FEM). The results show that the optimized LiNbO3 thickness is 0.1 and the optimized SiO2 thickness is 0.2λ. The optimized Al electrode thickness and metallization ratio are 0.07 and 0.4, respectively. The K2 of the SH-SAW is 29.89%, the corresponding phase velocity is 3624.00 m/s and TCF is about 10 ppm/°C with the optimized IDT/30° YX-LiNbO3/SiO2/Si layered structure.