Biblio
Cyber supply chain (CSC) security cost effectiveness should be the first and foremost decision to consider when integrating various networks in supplier inbound and outbound chains. CSC systems integrate different organizational network systems nodes such as SMEs and third-party vendors for business processes, information flows, and delivery channels. Adversaries are deploying various attacks such as RAT and Island-hopping attacks to penetrate, infiltrate, manipulate and change delivery channels. However, most businesses fail to invest adequately in security and do not consider analyzing the long term benefits of that to monitor and audit third party networks. Thus, making cost benefit analysis the most overriding factor. The paper explores the cost-benefit analysis of investing in cyber supply chain security to improve security. The contribution of the paper is threefold. First, we consider the various existing cybersecurity investments and the supply chain environment to determine their impact. Secondly, we use the NPV method to appraise the return on investment over a period of time. The approach considers other methods such as the Payback Period and Internal Rate of Return to analyze the investment appraisal decisions. Finally, we propose investment options that ensure CSC security performance investment appraisal, ROI, and business continuity. Our results show that NVP can be used for cost-benefit analysis and to appraise CSC system security to ensure business continuity planning and impact assessment.
Focusing on security management for supply chain under emergencies, this paper analyzes the characteristics of supply chain risk, clarifies the relationship between business continuity management and security management for supply chain, organizational resilience and security management for supply chain separately, so as to propose suggestions to promote the realization of security management for supply chain combined these two concepts, which is of guiding significance for security management for supply chain and quality assurance of products and services under emergencies.
This article describes attacks methods, vectors and technics used by threat actors during pandemic situations in the world. Identifies common targets of threat actors and cyber-attack tactics. The article analyzes cybersecurity challenges and specifies possible solutions and improvements in cybersecurity. Defines cybersecurity controls, which should be taken against analyzed attack vectors.
Disaster is an unexpected event in a system lifetime, which can be made by nature or even human errors. Disaster recovery of information technology is an area of information security for protecting data against unsatisfactory events. It involves a set of procedures and tools for returning an organization to a state of normality after an occurrence of a disastrous event. So the organizations need to have a good plan in place for disaster recovery. There are many strategies for traditional disaster recovery and also for cloud-based disaster recovery. This paper focuses on using cloud-based disaster recovery strategies instead of the traditional techniques, since the cloud-based disaster recovery has proved its efficiency in providing the continuity of services faster and in less cost than the traditional ones. The paper introduces a proposed model for virtual private disaster recovery on cloud by using two metrics, which comprise a recovery time objective and a recovery point objective. The proposed model has been evaluated by experts in the field of information technology and the results show that the model has ensured the security and business continuity issues, as well as the faster recovery of a disaster that could face an organization. The paper also highlights the cloud computing services and illustrates the most benefits of cloud-based disaster recovery.
In order to deal with shortcomings of security management systems, this work proposes a methodology based on agents paradigm for cybersecurity risk management. In this approach a system is decomposed in agents that may be used to attain goals established by attackers. Threats to business are achieved by attacker's goals in service and deployment agents. To support a proactive behavior, sensors linked to security mechanisms are analyzed accordingly with a model for Situational Awareness(SA)[4].