Biblio
With the advent of networking technologies and increasing network attacks, Intrusion Detection systems are apparently needed to stop attacks and malicious activities. Various frameworks and techniques have been developed to solve the problem of intrusion detection, still there is need for new frameworks as per the challenging scenario of enormous scale in data size and nature of attacks. Current IDS systems pose challenges on the throughput to work with high speed networks. In this paper we address the issue of high computational overhead of anomaly based IDS and propose the solution using discretization as a data preprocessing step which can drastically reduce the computation overhead. We propose method to provide near real time detection of attacks using only basic flow level features that can easily be extracted from network packets.
The United States, including the Department of Defense, relies heavily on information systems and networking technologies to efficiently conduct a wide variety of missions across the globe. With the ever-increasing rate of cyber attacks, this dependency places the nation at risk of a loss of confidentiality, integrity, and availability of its critical information resources; degrading its ability to complete the mission. In this paper, we introduce the operational data classes for establishing situational awareness in cyberspace. A system effectively using our key information components will be able to provide the nation's leadership timely and accurate information to gain an understanding of the operational cyber environment to enable strategic, operational, and tactical decision-making. In doing so, we present, define and provide examples of our key classes of operational data for cyber situational awareness and present a hypothetical case study demonstrating how they must be consolidated to provide a clear and relevant picture to a commander. In addition, current organizational and technical challenges are discussed, and areas for future research are addressed.