Visible to the public Biblio

Filters: Keyword is Belts  [Clear All Filters]
2022-04-19
Ammari, Habib M..  2021.  Achieving Physical Security through K-Barrier Coverage in Three-Dimensional Stealthy Lattice Wireless Sensor Networks. 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :306–314.
Physical security is essential to safeguarding critical areas. Here, we focus on the physical security problem in three-dimensional (3D) stealthy lattice wireless sensor networks using a 3D sensor belt around a critical space. Specifically, we propose a theoretical framework to investigate the 3D k-barrier coverage problem, where any path crossing this belt intersects with the sensing range of at least k sensors. Precisely, we study this problem from a tiling viewpoint, where the sensing ranges of the sensors are touching (or kissing) each other. We analyze various 3D deterministic sensor deployment methods yielding simple cubic, body centered cubic, face centered cubic, and hexagonal close-packed lattice wireless sensor networks. First, using the concept of the unit cell covered volume ratio, we prove that none of these 3D lattices guarantee k-barrier coverage. Second, to remedy this problem, we consider the great rhombicuboctahedron (GR), a polyhedral space-filler. We introduce the concept of intruder's abstract paths along a 3D k-barrier covered belt, and compute their number. Also, we propose a polynomial representation for all abstract paths. In addition, we compute the number of sensors deployed over a 3D k-barrier covered belt using GR. Third, we corroborate our analysis with numerical and simulation results.
2022-02-04
Salman, Amy Hamidah, Adiono, Trio, Abdurrahman, Imran, Aditya, Yudi, Chandra, Zefanya.  2021.  Aircraft Passenger Baggage Handling System with RFID Technology. 2021 International Symposium on Electronics and Smart Devices (ISESD). :1—5.
The mishandled passenger baggage in aviation industry is still a big problem. This research is focused on designing a baggage handling system (BHS) at the airport for identifying and tracking of passenger baggage based on RFID technology. The proposed BHS system consists of hardware device to identify the baggage and the cloud-based tracking application. The BHS device is designed based on UHF passive RFID technology and IoT technology. The device can be used as handheld device in check-in counter and arrival area. The device can also be used as a fixed device in screening, sortation, and transition belt conveyer. The BHS device consists of RFID reader module, a microcontroller, LCD, keypad, a WiFi module and a storage device. The user and airport staff can track the luggage position and its status through dashboard application.