Visible to the public Biblio

Filters: Keyword is static security assessment  [Clear All Filters]
2022-08-12
Liyanarachchi, Lakna, Hosseinzadeh, Nasser, Mahmud, Apel, Gargoom, Ameen, Farahani, Ehsan M..  2020.  Contingency Ranking Selection using Static Security Performance Indices in Future Grids. 2020 Australasian Universities Power Engineering Conference (AUPEC). :1–6.

Power system security assessment and enhancement in grids with high penetration of renewables is critical for pragmatic power system planning. Static Security Assessment (SSA) is a fast response tool to assess system stability margins following considerable contingencies assuming post fault system reaches a steady state. This paper presents a contingency ranking methodology using static security indices to rank credible contingencies considering severity. A Modified IEEE 9 bus system integrating renewables was used to test the approach. The static security indices used independently provides accurate results in identifying severe contingencies but further assessment is needed to provide an accurate picture of static security assessment in an increased time frame of the steady state. The indices driven for static security assessment could accurately capture and rank contingencies with renewable sources but due to intermittency of the renewable source various contingency ranking lists are generated. This implies that using indices in future grids without consideration on intermittent nature of renewables will make it difficult for the grid operator to identify severe contingencies and assist the power system operator to make operational decisions. This makes it necessary to integrate the behaviour of renewables in security indices for practical application in real time security assessment.

Fan, Chengwei, Chen, Zhen, Wang, Xiaoru, Teng, Yufei, Chen, Gang, Zhang, Hua, Han, Xiaoyan.  2019.  Static Security Assessment of Power System Considering Governor Nonlinearity. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :128–133.
Static security assessment is of great significance to ensure the stable transmission of electric power and steady operation of load. The scale of power system trends to expand due to the development of interconnected grid, and the security analysis of the entire network has become time-consuming. On the basis of synthesizing the efficiency and accuracy, a new method is developed. This method adopts a novel dynamic power flow (DPF) model considering the influence of governor deadband and amplitude-limit on the steady state quantitatively. In order to reduce the computation cost, a contingency screening algorithm based on binary search method is proposed. Static security assessment based on the proposed DPF models is applied to calculate the security margin constrained by severe contingencies. The ones with lower margin are chosen for further time-domain (TD) simulation analysis. The case study of a practical grid verifies the accuracy of the proposed model compared with the conventional one considering no governor nonlinearity. Moreover, the test of a practical grid in China, along with the TD simulation, demonstrates that the proposed method avoids massive simulations of all contingencies as well as provides detail information of severe ones, which is effective for security analysis of practical power grids.
2022-02-24
Ramirez-Gonzalez, M., Segundo Sevilla, F. R., Korba, P..  2021.  Convolutional Neural Network Based Approach for Static Security Assessment of Power Systems. 2021 World Automation Congress (WAC). :106–110.
Steady-state response of the grid under a predefined set of credible contingencies is an important component of power system security assessment. With the growing complexity of electrical networks, fast and reliable methods and tools are required to effectively assist transmission grid operators in making decisions concerning system security procurement. In this regard, a Convolutional Neural Network (CNN) based approach to develop prediction models for static security assessment under N-1 contingency is investigated in this paper. The CNN model is trained and applied to classify the security status of a sample system according to given node voltage magnitudes, and active and reactive power injections at network buses. Considering a set of performance metrics, the superior performance of the CNN alternative is demonstrated by comparing the obtained results with a support vector machine classifier algorithm.