Visible to the public Biblio

Filters: Keyword is nonfunctional quality  [Clear All Filters]
2020-08-13
Augusto, Cristian, Morán, Jesús, De La Riva, Claudio, Tuya, Javier.  2019.  Test-Driven Anonymization for Artificial Intelligence. 2019 IEEE International Conference On Artificial Intelligence Testing (AITest). :103—110.
In recent years, data published and shared with third parties to develop artificial intelligence (AI) tools and services has significantly increased. When there are regulatory or internal requirements regarding privacy of data, anonymization techniques are used to maintain privacy by transforming the data. The side-effect is that the anonymization may lead to useless data to train and test the AI because it is highly dependent on the quality of the data. To overcome this problem, we propose a test-driven anonymization approach for artificial intelligence tools. The approach tests different anonymization efforts to achieve a trade-off in terms of privacy (non-functional quality) and functional suitability of the artificial intelligence technique (functional quality). The approach has been validated by means of two real-life datasets in the domains of healthcare and health insurance. Each of these datasets is anonymized with several privacy protections and then used to train classification AIs. The results show how we can anonymize the data to achieve an adequate functional suitability in the AI context while maintaining the privacy of the anonymized data as high as possible.
2015-05-05
Chenine, M., Ullberg, J., Nordstrom, L., Wu, Y., Ericsson, G.N..  2014.  A Framework for Wide-Area Monitoring and Control Systems Interoperability and Cybersecurity Analysis. Power Delivery, IEEE Transactions on. 29:633-641.

Wide-area monitoring and control (WAMC) systems are the next-generation operational-management systems for electric power systems. The main purpose of such systems is to provide high resolution real-time situational awareness in order to improve the operation of the power system by detecting and responding to fast evolving phenomenon in power systems. From an information and communication technology (ICT) perspective, the nonfunctional qualities of these systems are increasingly becoming important and there is a need to evaluate and analyze the factors that impact these nonfunctional qualities. Enterprise architecture methods, which capture properties of ICT systems in architecture models and use these models as a basis for analysis and decision making, are a promising approach to meet these challenges. This paper presents a quantitative architecture analysis method for the study of WAMC ICT architectures focusing primarily on the interoperability and cybersecurity aspects.