Visible to the public Biblio

Filters: Keyword is KLT  [Clear All Filters]
2023-03-31
Magfirawaty, Magfirawaty, Budi Setiawan, Fauzan, Yusuf, Muhammad, Kurniandi, Rizki, Nafis, Raihan Fauzan, Hayati, Nur.  2022.  Principal Component Analysis and Data Encryption Model for Face Recognition System. 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). :381–386.

Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.

2022-03-01
Roy, Debaleena, Guha, Tanaya, Sanchez, Victor.  2021.  Graph Based Transforms based on Graph Neural Networks for Predictive Transform Coding. 2021 Data Compression Conference (DCC). :367–367.
This paper introduces the GBT-NN, a novel class of Graph-based Transform within the context of block-based predictive transform coding using intra-prediction. The GBT-NNis constructed by learning a mapping function to map a graph Laplacian representing the covariance matrix of the current block. Our objective of learning such a mapping functionis to design a GBT that performs as well as the KLT without requiring to explicitly com-pute the covariance matrix for each residual block to be transformed. To avoid signallingany additional information required to compute the inverse GBT-NN, we also introduce acoding framework that uses a template-based prediction to predict residuals at the decoder. Evaluation results on several video frames and medical images, in terms of the percentageof preserved energy and mean square error, show that the GBT-NN can outperform the DST and DCT.