Visible to the public Biblio

Filters: Keyword is Text similarity  [Clear All Filters]
2022-04-25
Jiang, Xiaoyu, Qiu, Tie, Zhou, Xiaobo, Zhang, Bin, Sun, Ximin, Chi, Jiancheng.  2021.  A Text Similarity-based Protocol Parsing Scheme for Industrial Internet of Things. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :781–787.
Protocol parsing is to discern and analyze packets' transmission fields, which plays an essential role in industrial security monitoring. The existing schemes parsing industrial protocols universally have problems, such as the limited parsing protocols, poor scalability, and high preliminary information requirements. This paper proposes a text similarity-based protocol parsing scheme (TPP) to identify and parse protocols for Industrial Internet of Things. TPP works in two stages, template generation and protocol parsing. In the template generation stage, TPP extracts protocol templates from protocol data packets by the cluster center extraction algorithm. The protocol templates will update continuously with the increase of the parsing packets' protocol types and quantities. In the protocol parsing phase, the protocol data packet will match the template according to the similarity measurement rules to identify and parse the fields of protocols. The similarity measurement method comprehensively measures the similarity between messages in terms of character position, sequence, and continuity to improve protocol parsing accuracy. We have implemented TPP in a smart industrial gateway and parsed more than 30 industrial protocols, including POWERLINK, DNP3, S7comm, Modbus-TCP, etc. We evaluate the performance of TPP by comparing it with the popular protocol analysis tool Netzob. The experimental results show that the accuracy of TPP is more than 20% higher than Netzob on average in industrial protocol identification and parsing.
2022-03-10
Ge, Xin.  2021.  Internet of things device recognition method based on natural language processing and text similarity. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :137—140.
Effective identification of Internet of things devices in cyberspace is of great significance to the protection of Cyberspace Security. However, there are a large number of such devices in cyberspace, which can not be identified by the existing methods of identifying IoT devices because of the lack of key information such as manufacturer name and device name in the response message. Their existence brings hidden danger to Cyberspace Security. In order to identify the IoT devices with missing key information in these response messages, this paper proposes an IoT device identification method, IoTCatcher. IoTCatcher uses HTTP response message and the structure and style characteristics of HTML document, and based on natural language processing technology and text similarity technology, classifies and compares the IoT devices whose response message lacks key information, so as to generate their device finger information. This paper proves that the recognition precision of IoTCatcher is 95.29%, and the recall rate is 91.01%. Compared with the existing methods, the overall performance is improved by 38.83%.