Biblio
With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.
Tactics Techniques and Procedures (TTPs) in cyber domain is an important threat information that describes the behavior and attack patterns of an adversary. Timely identification of associations between TTPs can lead to effective strategy for diagnosing the Cyber Threat Actors (CTAs) and their attack vectors. This study profiles the prevalence and regularities in the TTPs of CTAs. We developed a machine learning-based framework that takes as input Cyber Threat Intelligence (CTI) documents, selects the most prevalent TTPs with high information gain as features and based on them mine interesting regularities between TTPs using Association Rule Mining (ARM). We evaluated the proposed framework with publicly available TTPbased CTI documents. The results show that there are 28 TTPs more prevalent than the other TTPs. Our system identified 155 interesting association rules among the TTPs of CTAs. A summary of these rules is given to effectively investigate threats in the network.
Information on cyber incidents and threats are currently collected and processed with a strong technical focus. Threat and vulnerability information alone are not a solid base for effective, affordable or actionable security advice for decision makers. They need more than a small technical cut of a bigger situational picture to combat and not only to mitigate the cyber threat. We first give a short overview over the related work that can be found in the literature. We found that the approaches mostly analysed “what” has been done, instead of looking more generically beyond the technical aspects for the tactics, techniques and procedures to identify the “how” it was done, by whom and why. We examine then, what information categories and data already exist to answer the question for an adversary's capabilities and objectives. As traditional intelligence tries to serve a better understanding of adversaries' capabilities, actions, and intent, the same is feasible in the cyber space with cyber intelligence. Thus, we identify information sources in the military and civil environment, before we propose to link that traditional information with the technical data for a better situational picture. We give examples of information that can be collected from traditional intelligence for correlation with technical data. Thus, the same intelligence operational picture for the cyber sphere could be developed like the one that is traditionally fed from conventional intelligence disciplines. Finally we propose a way of including intelligence processing in cyber analysis. We finally outline requirements that are key for a successful exchange of information and intelligence between military/civil information providers.