Biblio
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
With the increasing scale of the network, the power information system has many characteristics, such as large number of nodes, complicated structure, diverse network protocols and abundant data, which make the network intrusion detection system difficult to detect real alarms. The current security technologies cannot meet the actual power system network security operation and protection requirements. Based on the attacker ability, the vulnerability information and the existing security protection configuration, we construct the attack sub-graphs by using the parallel distributed computing method and combine them into the whole network attack graph. The vulnerability exploit degree, attacker knowledge, attack proficiency, attacker willingness and the confidence level of the attack evidence are used to construct the security evaluation index system of the power information network system to calculate the attack probability value of each node of the attack graph. According to the probability of occurrence of each node attack, the pre-order attack path will be formed and then the most likely attack path and attack targets will be got to achieve the identification of attack intent.
Information on cyber incidents and threats are currently collected and processed with a strong technical focus. Threat and vulnerability information alone are not a solid base for effective, affordable or actionable security advice for decision makers. They need more than a small technical cut of a bigger situational picture to combat and not only to mitigate the cyber threat. We first give a short overview over the related work that can be found in the literature. We found that the approaches mostly analysed “what” has been done, instead of looking more generically beyond the technical aspects for the tactics, techniques and procedures to identify the “how” it was done, by whom and why. We examine then, what information categories and data already exist to answer the question for an adversary's capabilities and objectives. As traditional intelligence tries to serve a better understanding of adversaries' capabilities, actions, and intent, the same is feasible in the cyber space with cyber intelligence. Thus, we identify information sources in the military and civil environment, before we propose to link that traditional information with the technical data for a better situational picture. We give examples of information that can be collected from traditional intelligence for correlation with technical data. Thus, the same intelligence operational picture for the cyber sphere could be developed like the one that is traditionally fed from conventional intelligence disciplines. Finally we propose a way of including intelligence processing in cyber analysis. We finally outline requirements that are key for a successful exchange of information and intelligence between military/civil information providers.