Biblio
Filters: Keyword is Infectious diseases [Clear All Filters]
Remote Disaster Recovery and Backup of Rehabilitation Medical Archives Information System Construction under the Background of Big Data. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :575—578.
.
2022. Realize the same-city and remote disaster recovery of the infectious disease network direct reporting system of the China Medical Archives Information Center. Method: A three-tier B/S/DBMS architecture is used in the disaster recovery center to deploy an infectious disease network direct reporting system, and realize data-level disaster recovery through remote replication technology; realize application-level disaster recovery of key business systems through asynchronous data technology; through asynchronous the mode carries on the network direct report system disaster tolerance data transmission of medical files. The establishment of disaster recovery centers in different cities in the same city ensures the direct reporting system and data security of infectious diseases, and ensures the effective progress of continuity work. The results show that the efficiency of remote disaster recovery and backup based on big data has increased by 9.2%
Web-based Computational Tools for Calculating Optimal Testing Pool Size for Diagnostic Tests of Infectious Diseases. 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). :1—4.
.
2021. Pooling together samples and testing the resulting mixture is gaining considerable interest as a potential method to markedly increase the rate of testing for SARS-CoV-2, given the resource limited conditions. Such pooling can also be employed for carrying out large scale diagnostic testing of other infectious diseases, especially when the available resources are limited. Therefore, it has become important to design a user-friendly tool to assist clinicians and policy makers, to determine optimal testing pool and sub-pool sizes for their specific scenarios. We have developed such a tool; the calculator web application is available at https://riteshsingh.github.io/poolsize/. The algorithms employed are described and analyzed in this paper, and their application to other scientific fields is also discussed. We find that pooling always reduces the expected number of tests in all the conditions, at the cost of test sensitivity. The No sub-pooling optimal pool size calculator will be the most widely applicable one, because limitations of sample quantity will restrict sub-pooling in most conditions.
Discriminative Pattern Mining for Runtime Security Enforcement of Cyber-Physical Point-of-Care Medical Technology. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1066—1072.
.
2021. Point-of-care diagnostics are a key technology for various safety-critical applications from providing diagnostics in developing countries lacking adequate medical infrastructure to fight infectious diseases to screening procedures for border protection. Digital microfluidics biochips are an emerging technology that are increasingly being evaluated as a viable platform for rapid diagnosis and point-of-care field deployment. In such a technology, processing errors are inherent. Cyber-physical digital biochips offer higher reliability through the inclusion of automated error recovery mechanisms that can reconfigure operations performed on the electrode array. Recent research has begun to explore security vulnerabilities of digital microfluidic systems. This paper expands previous work that exploits vulnerabilities due to implicit trust in the error recovery mechanism. In this work, a discriminative data mining approach is introduced to identify frequent bioassay operations that can be cyber-physically attested for runtime security protection.