Visible to the public Biblio

Filters: Keyword is Inter Dependency Relations (IDRs)  [Clear All Filters]
2022-03-23
Roy, Sohini, Sen, Arunabha.  2021.  Identification and Mitigation of False Data Injection using Multi State Implicative Interdependency Model (MSIIM) for Smart Grid. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

Smart grid monitoring, automation and control will completely rely on PMU based sensor data soon. Accordingly, a high throughput, low latency Information and Communication Technology (ICT) infrastructure should be opted in this regard. Due to the low cost, low power profile, dynamic nature, improved accuracy and scalability, wireless sensor networks (WSNs) can be a good choice. Yet, the efficiency of a WSN depends a lot on the network design and the routing technique. In this paper a new design of the ICT network for smart grid using WSN is proposed. In order to understand the interactions between different entities, detect their operational levels, design the routing scheme and identify false data injection by particular ICT entities, a new model of interdependency called the Multi State Implicative Interdependency Model (MSIIM) is proposed in this paper, which is an updated version of the Modified Implicative Interdependency Model (MIIM) [1]. MSIIM considers the data dependency and operational accuracy of entities together with structural and functional dependencies between them. A multi-path secure routing technique is also proposed in this paper which relies on the MSIIM model for its functioning. Simulation results prove that MSIIM based False Data Injection (FDI) detection and mitigation works better and faster than existing methods.