Visible to the public Biblio

Filters: Keyword is Multilayer networks  [Clear All Filters]
2022-06-09
Papakostas, Dimitrios, Kasidakis, Theodoros, Fragkou, Evangelia, Katsaros, Dimitrios.  2021.  Backbones for Internet of Battlefield Things. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–8.
The Internet of Battlefield Things is a relatively new cyberphysical system and even though it shares a lot of concepts from the Internet of Things and wireless ad hoc networking in general, a lot of research is required to address its scale and peculiarities. In this article we examine a fundamental problem pertaining to the routing/dissemination of information, namely the construction of a backbone. We model an IoBT ad hoc network as a multilayer network and employ the concept of domination for multilayer networks which is a complete departure from the volume of earlier works, in order to select sets of nodes that will support the routing of information. Even though there is huge literature on similar topics during the past many years, the problem in military (IoBT) networks is quite different since these wireless networks are multilayer networks and treating them as a single (flat) network or treating each layer in isolation and calculating dominating set produces submoptimal or bad solutions; thus all the past literature which deals with single layer (flat) networks is in principle inappropriate. We design a new, distributed algorithm for calculating connected dominating sets which produces dominating sets of small cardinality. We evaluate the proposed algorithm on synthetic topologies, and compare it against the only two existing competitors. The proposed algorithm establishes itself as the clear winner in all experiments.
2022-04-01
Williams, Adam D., Adams, Thomas, Wingo, Jamie, Birch, Gabriel C., Caskey, Susan A., Fleming, Elizabeth S., Gunda, Thushara.  2021.  Resilience-Based Performance Measures for Next-Generation Systems Security Engineering. 2021 International Carnahan Conference on Security Technology (ICCST). :1—5.
Performance measures commonly used in systems security engineering tend to be static, linear, and have limited utility in addressing challenges to security performance from increasingly complex risk environments, adversary innovation, and disruptive technologies. Leveraging key concepts from resilience science offers an opportunity to advance next-generation systems security engineering to better describe the complexities, dynamism, and nonlinearity observed in security performance—particularly in response to these challenges. This article introduces a multilayer network model and modified Continuous Time Markov Chain model that explicitly captures interdependencies in systems security engineering. The results and insights from a multilayer network model of security for a hypothetical nuclear power plant introduce how network-based metrics can incorporate resilience concepts into performance metrics for next generation systems security engineering.