Biblio
Filters: Keyword is XLNet [Clear All Filters]
XSS Attack Detection Methods Based on XLNet and GRU. 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE). :171–175.
.
2021. With the progress of science and technology and the development of Internet technology, Internet technology has penetrated into various industries in today’s society. But this explosive growth is also troubling information security. Among them, XSS (cross-site scripting vulnerability) is one of the most influential vulnerabilities in Internet applications in recent years. Traditional network security detection technology is becoming more and more weak in the new network environment, and deep learning methods such as CNN and RNN can only learn the spatial or timing characteristics of data samples in a single way. In this paper, a generalized self-regression pretraining model XLNet and GRU XSS attack detection method is proposed, the self-regression pretrained model XLNet is introduced and combined with GRU to learn the time series and spatial characteristics of the data, and the generalization capability of the model is improved by using dropout. Faced with the increasingly complex and ever-changing XSS payload, this paper refers to the character-level convolution to establish a dictionary to encode the data samples, thus preserving the characteristics of the original data and improving the overall efficiency, and then transforming it into a two-dimensional spatial matrix to meet XLNet’s input requirements. The experimental results on the Github data set show that the accuracy of this method is 99.92 percent, the false positive rate is 0.02 percent, the accuracy rate is 11.09 percent higher than that of the DNN method, the false positive rate is 3.95 percent lower, and other evaluation indicators are better than GRU, CNN and other comparative methods, which can improve the detection accuracy and system stability of the whole detection system. This multi-model fusion method can make full use of the advantages of each model to improve the accuracy of system detection, on the other hand, it can also enhance the stability of the system.
Named Entity Recognition in Cyber Threat Intelligence Using Transformer-based Models. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :348—353.
.
2021. The continuous increase in sophistication of threat actors over the years has made the use of actionable threat intelligence a critical part of the defence against them. Such Cyber Threat Intelligence is published daily on several online sources, including vulnerability databases, CERT feeds, and social media, as well as on forums and web pages from the Surface and the Dark Web. Named Entity Recognition (NER) techniques can be used to extract the aforementioned information in an actionable form from such sources. In this paper we investigate how the latest advances in the NER domain, and in particular transformer-based models, can facilitate this process. To this end, the dataset for NER in Threat Intelligence (DNRTI) containing more than 300 pieces of threat intelligence reports from open source threat intelligence websites is used. Our experimental results demonstrate that transformer-based techniques are very effective in extracting cybersecurity-related named entities, by considerably outperforming the previous state- of-the-art approaches tested with DNRTI.