Visible to the public Biblio

Filters: Keyword is Personalized Differential Privacy  [Clear All Filters]
2022-04-20
Bhattacharjee, Arpan, Badsha, Shahriar, Hossain, Md Tamjid, Konstantinou, Charalambos, Liang, Xueping.  2021.  Vulnerability Characterization and Privacy Quantification for Cyber-Physical Systems. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :217–223.
Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while over-protecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a Standard Vulnerability Profiling Library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.
Bhattacharjee, Arpan, Badsha, Shahriar, Sengupta, Shamik.  2021.  Personalized Privacy Preservation for Smart Grid. 2021 IEEE International Smart Cities Conference (ISC2). :1–7.
The integration of advanced information, communication and data analytic technologies has transformed the traditional grid into an intelligent bidirectional system that can automatically adapt its services for utilities or consumers' needs. However, this change raises new privacy-related challenges. Privacy leakage has become a severe issue in the grid paradigm as adversaries run malicious analytics to identify the system's internal insight or use it to interrupt grids' operation by identifying real-time demand-based supply patterns. As a result, current grid authorities require an integrated mechanism to improve the system's sensitive data's privacy preservation. To this end, we present a multilayered smart grid architecture by characterizing the privacy issues that occur during data sharing, aggregation, and publishing by individual grid end nodes. Based on it, we quantify the nodes preferred privacy requirements. We further introduce personalized differential privacy (PDP) scheme based on trust distance in our proposed framework to provide the system with the added benefit of a user-specific privacy guarantee to eliminate differential privacy's limitation that allows the same level of privacy for all data providers. Lastly, we conduct extensive experimental analysis on a real-world grid dataset to illustrate that our proposed method is efficient enough to provide privacy preservation on sensitive smart grid data.