Visible to the public Biblio

Filters: Keyword is Evolutionary Game  [Clear All Filters]
2023-08-04
Zhang, Hengwei, Zhang, Xiaoning, Sun, Pengyu, Liu, Xiaohu, Ma, Junqiang, Zhang, Yuchen.  2022.  Traceability Method of Network Attack Based on Evolutionary Game. 2022 International Conference on Networking and Network Applications (NaNA). :232–236.
Cyberspace is vulnerable to continuous malicious attacks. Traceability of network attacks is an effective defense means to curb and counter network attacks. In this paper, the evolutionary game model is used to analyze the network attack and defense behavior. On the basis of the quantification of attack and defense benefits, the replication dynamic learning mechanism is used to describe the change process of the selection probability of attack and defense strategies, and finally the evolutionary stability strategies and their solution curves of both sides are obtained. On this basis, the attack behavior is analyzed, and the probability curve of attack strategy and the optimal attack strategy are obtained, so as to realize the effective traceability of attack behavior.
Bian, Yuan, Lin, Haitao, Song, Yuecai.  2022.  Game model of attack and defense for underwater wireless sensor networks. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:559–563.
At present, the research on the network security problem of underwater wireless sensors is still few, and since the underwater environment is exposed, passive security defense technology is not enough to deal with unknown security threats. Aiming at this problem, this paper proposes an offensive and defensive game model from the finite rationality of the network attack and defense sides, combined with evolutionary game theory. The replicated dynamic equation is introduced to analyze the evolution trend of strategies under different circumstances, and the selection algorithm of optimal strategy is designed, which verifies the effectiveness of this model through simulation and provides guidance for active defense technology.
ISSN: 2693-2865
2022-04-26
Li, Jun, Zhang, Wei, Chen, Xuehong, Yang, Shuaifeng, Zhang, Xueying, Zhou, Hao, Li, Yun.  2021.  A Novel Incentive Mechanism Based on Repeated Game in Fog Computing. 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication (CTISC). :112–119.

Fog computing is a new computing paradigm that utilizes numerous mutually cooperating terminal devices or network edge devices to provide computing, storage, and communication services. Fog computing extends cloud computing services to the edge of the network, making up for the deficiencies of cloud computing in terms of location awareness, mobility support and latency. However, fog nodes are not active enough to perform tasks, and fog nodes recruited by cloud service providers cannot provide stable and continuous resources, which limits the development of fog computing. In the process of cloud service providers using the resources in the fog nodes to provide services to users, the cloud service providers and fog nodes are selfish and committed to maximizing their own payoffs. This situation makes it easy for the fog node to work negatively during the execution of the task. Limited by the low quality of resource provided by fog nodes, the payoff of cloud service providers has been severely affected. In response to this problem, an appropriate incentive mechanism needs to be established in the fog computing environment to solve the core problems faced by both cloud service providers and fog nodes in maximizing their respective utility, in order to achieve the incentive effect. Therefore, this paper proposes an incentive model based on repeated game, and designs a trigger strategy with credible threats, and obtains the conditions for incentive consistency. Under this condition, the fog node will be forced by the deterrence of the trigger strategy to voluntarily choose the strategy of actively executing the task, so as to avoid the loss of subsequent rewards when it is found to perform the task passively. Then, using evolutionary game theory to analyze the stability of the trigger strategy, it proves the dynamic validity of the incentive consistency condition.