Visible to the public Biblio

Filters: Keyword is personal health record  [Clear All Filters]
2023-07-13
Kaliyaperumal, Karthikeyan, Sammy, F..  2022.  An Efficient Key Generation Scheme for Secure Sharing of Patients Health Records using Attribute Based Encryption. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Attribute Based Encryption that solely decrypts the cipher text's secret key attribute. Patient information is maintained on trusted third party servers in medical applications. Before sending health records to other third party servers, it is essential to protect them. Even if data are encrypted, there is always a danger of privacy violation. Scalability problems, access flexibility, and account revocation are the main security challenges. In this study, individual patient health records are encrypted utilizing a multi-authority ABE method that permits a multiple number of authorities to govern the attributes. A strong key generation approach in the classic Attribute Based Encryption is proposed in this work, which assures the robust protection of health records while also demonstrating its effectiveness. Simulation is done by using CloudSim Simulator and Statistical reports were generated using Cloud Reports. Efficiency, computation time and security of our proposed scheme are evaluated. The simulation results reveal that the proposed key generation technique is more secure and scalable.
2022-05-09
Nana, Huang, Yuanyuan, Yang.  2021.  An Integrative and Privacy Preserving-Based Medical Cloud Platform. 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA). :411–414.
With the rapid development of cloud computing which has been extensively applied in the health research, the concept of medical cloud has become widespread. In this paper, we proposed an integrated medical cloud architecture with multiple applications based on privacy protection. The scheme in this paper adopted attribute encryption to ensure the PHR files encrypted all the time in order to protect the health privacy of the PHR owners not leaked. In addition, the medical cloud architecture proposed in this paper is suitable for multiple application scenarios. Different from the traditional domain division which has public domain (PUD) and private domain (PSD), the PUD domain is further divided into PUD1and PUD2 with finer granularity based on different permissions of the PHR users. In the PUD1, the PHR users have read or write access to the PHR files, while the PHR users in the PUD2 only have read permissions. In the PSD, we use key aggregation encryption (KAE) to realize the access control. For PHR users of PUD1 and PUD2, the outsourcable ABE technology is adopted to greatly reduce the computing burden of users. The results of function and performance test show that the scheme is safe and effective.