Biblio
Filters: Keyword is Wireless fidelity (Wi-Fi) [Clear All Filters]
Visible Light Communication using Li-Fi. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :257–262.
.
2022. Over earlier years of huge technical developments, the need for a communication system has risen tremendously. Inrecent times, public realm interaction has been a popular area, hence the research group is emphasizing the necessity of quick and efficient broadband speeds, as well as upgraded security protocols. The main objective of this project work is to combine conventional Li-Fi and VLC techniques for video communication. VLC is helping to deliver fast data speeds, bandwidth efficiency, and a relatively secure channel of communication. Li-Fi is an inexpensive wireless communication (WC) system. Li-Fi can transmit information (text, audio, and video) to any electronic device via the LEDs that are positioned in the space to provide lighting. Li-Fi provides more advantages than Wi-Fi, such as security, high efficiency, speed, throughput, and low latency. The information can be transferred based on the flash property of the LED. Communication is accomplished by turning on and off LED lights at a faster pace than the human visual system can detect.
ISSN: 2644-1802
Design of Visible Light Communication System Using Ask Modulation. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :894–899.
.
2021. A Visible Light Communication (VLC) is a fast growing technology became ubiquitous in the Optical wireless communication domain. It has the benefits of high security, high bandwidth, less power consumption, free from Electro Magnetic radiation hazards. VLC can help to address the looming spectrum crunch problem with secure communication in an unlimited spectrum. VLC provides extensive wireless connectivity with larger data densities than Wi-Fi along with added security features that annihilate unwanted external network invasion. The problem such as energy consumption and infrastructure complexity has been reduced by integrating the illumination and data services. The objective is to provide fast data communication with uninterrupted network connectivity and high accuracy to the user. In this paper, a proposed visible light communication system for transmitting text information using amplitude shift keying modulation (ASK) has been presented. Testing of transmitter and receiver block based on frequency, power and distance has been analyzed. The results show that the receiver is capable of receiving input data with minimum length under direct communication with the transmitter.