Visible to the public Biblio

Found 138 results

Filters: Keyword is Market research  [Clear All Filters]
2022-01-10
Kalinin, Maxim O., Krundyshev, Vasiliy M..  2021.  Computational Intelligence Technologies Stack for Protecting the Critical Digital Infrastructures against Security Intrusions. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :118–122.
Over the past decade, an infotelecommunication technology has made significant strides forward. With the advent of new generation wireless networks and the massive digitalization of industries, the object of protection has changed. The digital transformation has led to an increased opportunity for cybercriminals. The ability of computational intelligence to quickly process large amounts of data makes the intrusions tailored to specific environments. Polymorphic attacks that have mutations in their sequences of acts adapt to the communication environments, operating systems and service frameworks, and also try to deceive the defense tools. The poor protection of most Internet of Things devices allows the attackers to take control over them creating the megabotnets. In this regard, traditional methods of network protection become rigid and low-effective. The paper reviews a computational intelligence (CI) enabled software- defined network (SDN) for the network management, providing dynamic network reconfiguration to improve network performance and security control. Advanced machine learning and artificial neural networks are promising in detection of false data injections. Bioinformatics methods make it possible to detect polymorphic attacks. Swarm intelligence detects dynamic routing anomalies. Quantum machine learning is effective at processing the large volumes of security-relevant datasets. The CI technology stack provides a comprehensive protection against a variative cyberthreats scope.
Ibrahim, Mariam, Nabulsi, Intisar.  2021.  Security Analysis of Smart Home Systems Applying Attack Graph. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :230–234.
In this work, security analysis of a Smart Home System (SHS) is inspected. The paper focuses on describing common and likely cyber security threats against SHS. This includes both their influence on human privacy and safety. The SHS is properly presented and formed applying Architecture Analysis and Design Language (AADL), exhibiting the system layout, weaknesses, attack practices, besides their requirements and post settings. The obtained model is later inspected along with a security requirement with JKind model tester software for security endangerment. The overall attack graph causing system compromise is graphically given using Graphviz.
Wang, Xiaoyu, Han, Zhongshou, Yu, Rui.  2021.  Security Situation Prediction Method of Industrial Control Network Based on Ant Colony-RBF Neural Network. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). :834–837.
To understand the future trend of network security, the field of network security began to introduce the concept of NSSA(Network Security Situation Awareness). This paper implements the situation assessment model by using game theory algorithms to calculate the situation value of attack and defense behavior. After analyzing the ant colony algorithm and the RBF neural network, the defects of the RBF neural network are improved through the advantages of the ant colony algorithm, and the situation prediction model based on the ant colony-RBF neural network is realized. Finally, the model was verified experimentally.
Gaur, Manvika, Gupta, Ritu, Singh, Abhilasha.  2021.  Use of AES Algorithm in Development of SMS Application on Android Platform. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–5.
Encrypting the data when it comes to security from foreign intrusions is necessary. Being such a vast field the search for the perfect algorithm is crucial. Such an algorithm which is feasible, scalable and most importantly not easy to crack is the ideal algorithm for its use, in the application ``CRYPTOSMS''.SMS (Short messaging service) is not encrypted end to end like WhatsApp. So, to solve the problem of security, CRYPTOSMS was created so that all the messages sent and received are secured. This paper includes the search for the ideal algorithm for the application by comparison with other algorithms and how it is used in making of the application.
2021-11-29
Nazemi, Kawa, Klepsch, Maike J., Burkhardt, Dirk, Kaupp, Lukas.  2020.  Comparison of Full-Text Articles and Abstracts for Visual Trend Analytics through Natural Language Processing. 2020 24th International Conference Information Visualisation (IV). :360–367.
Scientific publications are an essential resource for detecting emerging trends and innovations in a very early stage, by far earlier than patents may allow. Thereby Visual Analytics systems enable a deep analysis by applying commonly unsupervised machine learning methods and investigating a mass amount of data. A main question from the Visual Analytics viewpoint in this context is, do abstracts of scientific publications provide a similar analysis capability compared to their corresponding full-texts? This would allow to extract a mass amount of text documents in a much faster manner. We compare in this paper the topic extraction methods LSI and LDA by using full text articles and their corresponding abstracts to obtain which method and which data are better suited for a Visual Analytics system for Technology and Corporate Foresight. Based on a easy replicable natural language processing approach, we further investigate the impact of lemmatization for LDA and LSI. The comparison will be performed qualitative and quantitative to gather both, the human perception in visual systems and coherence values. Based on an application scenario a visual trend analytics system illustrates the outcomes.
2021-09-21
Zhao, Quanling, Sun, Jiawei, Ren, Hongjia, Sun, Guodong.  2020.  Machine-Learning Based TCP Security Action Prediction. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1329–1333.
With the continuous growth of Internet technology and the increasingly broadening applications of The Internet, network security incidents as well as cyber-attacks are also showing a growing trend. Consequently, computer network security is becoming increasingly important. TCP firewall is a computer network security system, and it allows or denies the transmission of data according to specific rules for providing security for the computer network. Traditional firewalls rely on network administrators to set security rules for them, and network administrators sometimes need to choose to allow and deny packets to keep computer networks secure. However, due to the huge amount of data on the Internet, network administrators have a huge task. Therefore, it is particularly important to solve this problem by using the machine learning method of computer technology. This study aims to predict TCP security action based on the TCP transmission characteristics dataset provided by UCI machine learning repository by implementing machine learning models such as neural network, support vector machine (SVM), AdaBoost, and Logistic regression. Processes including evaluating various models and interpretability analysis. By utilizing the idea of ensemble-learning, the final result has an accuracy score of over 98%.
2021-08-18
Al-Aali, Yousuf, Boussakta, Said.  2020.  Lightweight block ciphers for resource-constrained devices. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1—6.
Lightweight cryptography is a new branch of cryptography focused on providing security to resource-constraint devices such as wireless sensor networks (WSN), Radio-Frequency Identification (RFIDs) and other embedded systems. The factors considered in lightweight cryptography are mainly circuit area, memory requirement, processing time, latency, power, and energy consumption. This paper presents a discussion on common lightweight block ciphers in terms of different performance parameters, strength, design trends, limitations, and applications including the National Institute of Science and Technology (NIST) round 1 and 2 candidates. Analysis of these lightweight algorithms has offered an insight into this newly emerging field of cryptography.
2021-08-17
Wang, Zhuoyao, Guo, Changguo, Fu, Zhipeng, Yang, Shazhou.  2020.  Identifying the Development Trend of ARM-based Server Ecosystem Using Linux Kernels. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :284—288.
In the last couple of years ARM-based servers have been gradually adopted by cloud service providers and utilized in the data centers. Such tendency may provide great business opportunities for various companies in the industry. Hence, the ability to timely track the development trend of the ARM-based server ecosystem (ASE) from technical perspective is of great importance. In this paper the level of development of the ASE is quantitatively assessed based on open-source data analysis. In particular, statistical data is extracted from 42 Linux kernels to analyze the development process of the ASE. Furthermore, an estimate of the development trend of the ASE in the next 10 years is made based on the statistical data. The estimated results provide insight on when the ASE may become as mature as today's x86-based server ecosystem.
2021-08-12
Kim, Byoungkoo, Yoon, Seoungyong, Kang, Yousung, Choi, Dooho.  2020.  Secure IoT Device Authentication Scheme using Key Hiding Technology. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1808—1810.
As the amount of information distributed and processed through IoT(Internet of Things) devices is absolutely increased, various security issues are also emerging. Above all, since IoT technology is directly applied to our real life, there is a growing concern that the dangers of the existing cyberspace can be expanded into the real world. In particular, leaks of keys necessary for authentication and data protection of IoT devices are causing economic and industrial losses through illegal copying and data leakage. Therefore, this paper introduces the research trend of hardware and software based key hiding technology to respond to these security threats, and proposes IoT device authentication techniques using them. The proposed method fundamentally prevents the threat of exposure of the authentication key due to various security vulnerabilities by properly integrating hardware and software based key hiding technologies. That is, this paper provides a more reliable IoT device authentication scheme by using key hiding technology for authentication key management.
2021-05-18
Hasslinger, Gerhard, Ntougias, Konstantinos, Hasslinger, Frank, Hohlfeld, Oliver.  2020.  General Knapsack Bounds of Web Caching Performance Regarding the Properties of each Cacheable Object. 2020 IFIP Networking Conference (Networking). :821–826.
Caching strategies have been evaluated and compared in many studies, most often via simulation, but also in analytic methods. Knapsack solutions provide a general analytical approach for upper bounds on web caching performance. They assume objects of maximum (value/size) ratio being selected as cache content, with flexibility to define the caching value. Therefore the popularity, cost, size, time-to-live restrictions etc. per object can be included an overall caching goal, e.g., for reducing delay and/or transport path length in content delivery. The independent request model (IRM) leads to basic knapsack bounds for static optimum cache content. We show that a 2-dimensional (2D-)knapsack solution covers arbitrary request pattern, which selects dynamically changing content yielding maximum caching value for any predefined request sequence. Moreover, Belady's optimum strategy for clairvoyant caching is identified as a special case of our 2D-knapsack solution when all objects are unique. We also summarize a comprehensive picture of the demands and efficiency criteria for web caching, including updating speed and overheads. Our evaluations confirm significant performance gaps from LRU to advanced GreedyDual and score-based web caching methods and to the knapsack bounds.
2021-04-27
Kotturu, P. K., Kumar, A..  2020.  Data Mining Visualization with the Impact of Nature Inspired Algorithms in Big Data. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :664—668.

Data mining visualization is an important aspect of big data visualization and analysis. The impact of the nature-inspired algorithm along with the impact of computing traditions for the complete visualization of the storage and data communication needs have been studied. This paper also explores the possibilities of the hybridization of data mining in terms of association of cloud computing. It also explores the data analytical view in the exploration of these approaches in terms of data storage in big data. Based on these aspects the methodological advancement along with the problem statements has been analyzed. This will help in the exploration of computational capability along with the new insights in this domain.

Sasubilli, S. M., Dubey, A. K., Kumar, A..  2020.  Hybrid security analysis based on intelligent adaptive learning in Big Data. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1—5.

Big data provides a way to handle and analyze large amount of data or complex set. It provides a systematic extraction also. In this paper a hybrid security analysis based on intelligent adaptive learning in big data has been discussed with the current trends. This paper also explores the possibility of cloud computing collaboration with big data. The advantages along with the impact for the overall platform evaluation has been discussed with the traditional trends. It has been useful in the analysis and the exploration of future research. This discussion also covers the computational variability and the connotation in terms of data reliability, availability and management in big data with data security aspects.

Sekar, K., Devi, K. Suganya, Srinivasan, P., SenthilKumar, V. M..  2020.  Deep Wavelet Architecture for Compressive sensing Recovery. 2020 Seventh International Conference on Information Technology Trends (ITT). :185–189.
The deep learning-based compressive Sensing (CS) has shown substantial improved performance and in run-time reduction with signal sampling and reconstruction. In most cases, moreover, these techniques suffer from disrupting artefacts or high-frequency contents at low sampling ratios. Similarly, this occurs in the multi-resolution sampling method, which further collects more components with lower frequencies. A promising innovation combining CS with convolutionary neural network has eliminated the sparsity constraint yet recovery persists slow. We propose a Deep wavelet based compressive sensing with multi-resolution framework provides better improvement in reconstruction as well as run time. The proposed model demonstrates outstanding quality on test functions over previous approaches.
2021-02-03
Xu, J., Howard, A..  2020.  How much do you Trust your Self-Driving Car? Exploring Human-Robot Trust in High-Risk Scenarios 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :4273—4280.

Trust is an important characteristic of successful interactions between humans and agents in many scenarios. Self-driving scenarios are of particular relevance when discussing the issue of trust due to the high-risk nature of erroneous decisions being made. The present study aims to investigate decision-making and aspects of trust in a realistic driving scenario in which an autonomous agent provides guidance to humans. To this end, a simulated driving environment based on a college campus was developed and presented. An online and an in-person experiment were conducted to examine the impacts of mistakes made by the self-driving AI agent on participants’ decisions and trust. During the experiments, participants were asked to complete a series of driving tasks and make a sequence of decisions in a time-limited situation. Behavior analysis indicated a similar relative trend in the decisions across these two experiments. Survey results revealed that a mistake made by the self-driving AI agent at the beginning had a significant impact on participants’ trust. In addition, similar overall experience and feelings across the two experimental conditions were reported. The findings in this study add to our understanding of trust in human-robot interaction scenarios and provide valuable insights for future research work in the field of human-robot trust.

2021-02-01
Rathi, P., Adarsh, P., Kumar, M..  2020.  Deep Learning Approach for Arbitrary Image Style Fusion and Transformation using SANET model. 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184). :1049–1057.
For real-time applications of arbitrary style transformation, there is a trade-off between the quality of results and the running time of existing algorithms. Hence, it is required to maintain the equilibrium of the quality of generated artwork with the speed of execution. It's complicated for the present arbitrary style-transformation procedures to preserve the structure of content-image while blending with the design and pattern of style-image. This paper presents the implementation of a network using SANET models for generating impressive artworks. It is flexible in the fusion of new style characteristics while sustaining the semantic-structure of the content-image. The identity-loss function helps to minimize the overall loss and conserves the spatial-arrangement of content. The results demonstrate that this method is practically efficient, and therefore it can be employed for real-time fusion and transformation using arbitrary styles.
2021-01-28
Siddiquie, K., Shafqat, N., Masood, A., Abbas, H., Shahid, W. b.  2020.  Profiling Vulnerabilities Threatening Dual Persona in Android Framework. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1—6.

Enterprises round the globe have been searching for a way to securely empower AndroidTM devices for work but have spurned away from the Android platform due to ongoing fragmentation and security concerns. Discrepant vulnerabilities have been reported in Android smartphones since Android Lollipop release. Smartphones can be easily hacked by installing a malicious application, visiting an infectious browser, receiving a crafted MMS, interplaying with plug-ins, certificate forging, checksum collisions, inter-process communication (IPC) abuse and much more. To highlight this issue a manual analysis of Android vulnerabilities is performed, by using data available in National Vulnerability Database NVD and Android Vulnerability website. This paper includes the vulnerabilities that risked the dual persona support in Android 5 and above, till Dec 2017. In our security threat analysis, we have identified a comprehensive list of Android vulnerabilities, vulnerable Android versions, manufacturers, and information regarding complete and partial patches released. So far, there is no published research work that systematically presents all the vulnerabilities and vulnerability assessment for dual persona feature of Android's smartphone. The data provided in this paper will open ways to future research and present a better Android security model for dual persona.

2020-08-14
Jin, Zhe, Chee, Kong Yik, Xia, Xin.  2019.  What Do Developers Discuss about Biometric APIs? 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). :348—352.
With the emergence of biometric technology in various applications, such as access control (e.g. mobile lock/unlock), financial transaction (e.g. Alibaba smile-to-pay) and time attendance, the development of biometric system attracts increasingly interest to the developers. Despite a sound biometric system gains the security assurance and great usability, it is a rather challenging task to develop an effective biometric system. For instance, many public available biometric APIs do not provide sufficient instructions / precise documentations on the usage of biometric APIs. Many developers are struggling in implementing these APIs in various tasks. Moreover, quick update on biometric-based algorithms (e.g. feature extraction and matching) may propagate to APIs, which leads to potential confusion to the system developers. Hence, we conduct an empirical study to the problems that the developers currently encountered while implementing the biometric APIs as well as the issues that need to be addressed when developing biometric systems using these APIs. We manually analyzed a total of 500 biometric API-related posts from various online media such as Stack Overflow and Neurotechnology. We reveal that 1) most of the problems encountered are related to the lack of precise documentation on the biometric APIs; 2) the incompatibility of biometric APIs cross multiple implementation environments.
2020-07-03
Huijuan, Wang, Yong, Jiang, Xingmin, Ma.  2019.  Fast Bi-dimensional Empirical Mode based Multisource Image Fusion Decomposition. 2019 28th Wireless and Optical Communications Conference (WOCC). :1—4.

Bi-dimensional empirical mode decomposition can decompose the source image into several Bi-dimensional Intrinsic Mode Functions. In the process of image decomposition, interpolation is needed and the upper and lower envelopes will be drawn. However, these interpolations and the drawings of upper and lower envelopes require a lot of computation time and manual screening. This paper proposes a simple but effective method that can maintain the characteristics of the original BEMD method, and the Hermite interpolation reconstruction method is used to replace the surface interpolation, and the variable neighborhood window method is used to replace the fixed neighborhood window method. We call it fast bi-dimensional empirical mode decomposition of the variable neighborhood window method based on research characteristics, and we finally complete the image fusion. The empirical analysis shows that this method can overcome the shortcomings that the source image features and details information of BIMF component decomposed from the original BEMD method are not rich enough, and reduce the calculation time, and the fusion quality is better.

2020-05-22
Li, Xiaodong.  2019.  DURS: A Distributed Method for k-Nearest Neighbor Search on Uncertain Graphs. 2019 20th IEEE International Conference on Mobile Data Management (MDM). :377—378.
Large graphs are increasingly prevalent in mobile networks, social networks, traffic networks and biological networks. These graphs are often uncertain, where edges are augmented with probabilities that indicates the chance to exist. Recently k-nearest neighbor search has been studied within the field of uncertain graphs, but the scalability and efficiency issues are not well solved. Moreover, solutions are implemented on a single machine and thus cannot fit large uncertain graphs. In this paper, we develop a framework, called DURS, to distribute k-nearest neighbor search into several machines and re-partition the uncertain graphs to balance the work loads and reduce the communication costs. Evaluation results show that DURS is essential to make the system scalable when answering k-nearest neighbor queries on uncertain graphs.
2020-04-13
Morishita, Shun, Hoizumi, Takuya, Ueno, Wataru, Tanabe, Rui, Gañán, Carlos, van Eeten, Michel J.G., Yoshioka, Katsunari, Matsumoto, Tsutomu.  2019.  Detect Me If You… Oh Wait. An Internet-Wide View of Self-Revealing Honeypots. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :134–143.
Open-source honeypots are a vital component in the protection of networks and the observation of trends in the threat landscape. Their open nature also enables adversaries to identify the characteristics of these honeypots in order to detect and avoid them. In this study, we investigate the prevalence of 14 open- source honeypots running more or less default configurations, making them easily detectable by attackers. We deploy 20 simple signatures and test them for false positives against servers for domains in the Alexa top 10,000, official FTP mirrors, mail servers in real operation, and real IoT devices running telnet. We find no matches, suggesting good accuracy. We then measure the Internet-wide prevalence of default open-source honeypots by matching the signatures with Censys scan data and our own scans. We discovered 19,208 honeypots across 637 Autonomous Systems that are trivially easy to identify. Concentrations are found in research networks, but also in enterprise, cloud and hosting networks. While some of these honeypots probably have no operational relevance, e.g., they are student projects, this explanation does not fit the wider population. One cluster of honeypots was confirmed to belong to a well-known security center and was in use for ongoing attack monitoring. Concentrations in an another cluster appear to be the result of government incentives. We contacted 11 honeypot operators and received response from 4 operators, suggesting the problem of lack of network hygiene. Finally, we find that some honeypots are actively abused by attackers for hosting malicious binaries. We notified the owners of the detected honeypots via their network operators and provided recommendations for customization to avoid simple signature-based detection. We also shared our results with the honeypot developers.
2020-02-26
Almohaimeed, Abdulrahman, Asaduzzaman, Abu.  2019.  Incorporating Monitoring Points in SDN to Ensure Trusted Links Against Misbehaving Traffic Flows. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.

The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.

2020-02-10
Lekha, J., Maheshwaran, J, Tharani, K, Ram, Prathap K, Surya, Murthy K, Manikandan, A.  2019.  Efficient Detection of Spam Messages Using OBF and CBF Blocking Techniques. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1175–1179.

Emails are the fundamental unit of web applications. There is an exponential growth in sending and receiving emails online. However, spam mail has turned into an intense issue in email correspondence condition. There are number of substance based channel systems accessible to be specific content based filter(CBF), picture based sifting and many other systems to channel spam messages. The existing technological solution consists of a combination of porter stemer algorithm(PSA) and k means clustering which is adaptive in nature. These procedures are more expensive in regard of the calculation and system assets as they required the examination of entire spam message and calculation of the entire substance of the server. These are the channels must additionally not powerful in nature life on the grounds that the idea of spam block mail and spamming changes much of the time. We propose a starting point based spam mail-sifting system benefit, which works considering top head notcher data of the mail message paying little respect to the body substance of the mail. It streamlines the system and server execution by increasing the precision, recall and accuracy than the existing methods. To design an effective and efficient of autonomous and efficient spam detection system to improve network performance from unknown privileged user attacks.

2020-01-20
Halimaa A., Anish, Sundarakantham, K..  2019.  Machine Learning Based Intrusion Detection System. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :916–920.

In order to examine malicious activity that occurs in a network or a system, intrusion detection system is used. Intrusion Detection is software or a device that scans a system or a network for a distrustful activity. Due to the growing connectivity between computers, intrusion detection becomes vital to perform network security. Various machine learning techniques and statistical methodologies have been used to build different types of Intrusion Detection Systems to protect the networks. Performance of an Intrusion Detection is mainly depends on accuracy. Accuracy for Intrusion detection must be enhanced to reduce false alarms and to increase the detection rate. In order to improve the performance, different techniques have been used in recent works. Analyzing huge network traffic data is the main work of intrusion detection system. A well-organized classification methodology is required to overcome this issue. This issue is taken in proposed approach. Machine learning techniques like Support Vector Machine (SVM) and Naïve Bayes are applied. These techniques are well-known to solve the classification problems. For evaluation of intrusion detection system, NSL- KDD knowledge discovery Dataset is taken. The outcomes show that SVM works better than Naïve Bayes. To perform comparative analysis, effective classification methods like Support Vector Machine and Naive Bayes are taken, their accuracy and misclassification rate get calculated.

2020-01-13
Zhao, Xuanyi, Cassella, Cristian.  2019.  On the Coupling Coefficient of ScyAl1-yN-based Piezoelectric Acoustic Resonators. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC). :1–4.
This work investigates the electromechanical coupling coefficient (kt2) attained by two available piezoelectric acoustic resonator technologies relying on Aluminum Scandium Nitride (ScyAl1-yN) films to operate. In particular, by using a theoretical approach, we extracted the maximum kt2-value attainable, for different scandium-doping concentrations (from 0% to 40%), by Film-Bulk-Acoustic-Resonators (FBARs) and Cross-Sectional-Lamé-Mode Resonators (CLMRs). For the first time, we show how the use of higher scandium doping concentrations can render the kt2 of CLMRs higher (35%) than the one attained by FBARs (28%). Such a unique feature renders CLMRs as ideal candidates to form lithographically defined resonators and filters for next-generation wideband radiofrequency (RF) front-ends.
2019-03-11
Raj, R. V., Balasubramanian, K., Nandhini, T..  2018.  Establishing Trust by Detecting Malicious Nodes in Delay Tolerant Network. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1385–1390.
A Network consists of many nodes among which there may be a presence of misbehavior nodes. Delay Tolerant Network (DTN) is a network where the disconnections occur frequently. Store, carry and forward method is followed in DTN. The serious threat against routing in DTN is the selfish behavior. The main intention of selfish node is to save its own energy. Detecting the selfish node in DTN is very difficult. In this paper, a probabilistic misbehavior detection scheme called MAXTRUST has been proposed. Trusted Authority (TA) has been introduced in order to detect the behavior of the nodes periodically based on the task, forwarding history and contact history evidence. After collecting all the evidences from the nodes, the TA would check the inspection node about its behavior. The actions such as punishment or compensation would be given to that particular node based on its behavior. The TA performs probabilistic checking, in order to ensure security at a reduced cost. To further improve the efficiency, dynamic probabilistic inspection has been demonstrated using game theory analysis. The simulation results show the effectiveness and efficiency of the MAXTRUST scheme.