Visible to the public Biblio

Filters: Keyword is Attack Templates  [Clear All Filters]
2022-07-05
Parizad, Ali, Hatziadoniu, Constantine.  2021.  Semi-Supervised False Data Detection Using Gated Recurrent Units and Threshold Scoring Algorithm. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
In recent years, cyber attackers are targeting the power system and imposing different damages to the national economy and public safety. False Data Injection Attack (FDIA) is one of the main types of Cyber-Physical attacks that adversaries can manipulate power system measurements and modify system data. Consequently, it may result in incorrect decision-making and control operations and lead to devastating effects. In this paper, we propose a two-stage detection method. In the first step, Gated Recurrent Unit (GRU), as a deep learning algorithm, is employed to forecast the data for the future horizon. Meanwhile, hyperparameter optimization is implemented to find the optimum parameters (i.e., number of layers, epoch, batch size, β1, β2, etc.) in the supervised learning process. In the second step, an unsupervised scoring algorithm is employed to find the sequences of false data. Furthermore, two penalty factors are defined to prevent the objective function from greedy behavior. We assess the capability of the proposed false data detection method through simulation studies on a real-world data set (ComEd. dataset, Northern Illinois, USA). The results demonstrate that the proposed method can detect different types of attacks, i.e., scaling, simple ramp, professional ramp, and random attacks, with good performance metrics (i.e., recall, precision, F1 Score). Furthermore, the proposed deep learning method can mitigate false data with the estimated true values.