Biblio
In this paper, we present an overview of the problems associated with the cross-site scripting (XSS) in the graphical content of web applications. The brief analysis of vulnerabilities for graphical files and factors responsible for making SVG images vulnerable to XSS attacks are discussed. XML treatment methods and their practical testing are performed. As a result, the set of rules for protecting the graphic content of the websites and prevent XSS vulnerabilities are proposed.
Botnets are the most common vehicle of cyber-criminal activity. They are used for spamming, phishing, denial-of-service attacks, brute-force cracking, stealing private information, and cyber warfare. Botnets carry out network scans for several reasons, including searching for vulnerable machines to infect and recruit into the botnet, probing networks for enumeration or penetration, etc. We present the measurement and analysis of a horizontal scan of the entire IPv4 address space conducted by the Sality botnet in February 2011. This 12-day scan originated from approximately 3 million distinct IP addresses and used a heavily coordinated and unusually covert scanning strategy to try to discover and compromise VoIP-related (SIP server) infrastructure. We observed this event through the UCSD Network Telescope, a /8 darknet continuously receiving large amounts of unsolicited traffic, and we correlate this traffic data with other public sources of data to validate our inferences. Sality is one of the largest botnets ever identified by researchers. Its behavior represents ominous advances in the evolution of modern malware: the use of more sophisticated stealth scanning strategies by millions of coordinated bots, targeting critical voice communications infrastructure. This paper offers a detailed dissection of the botnet's scanning behavior, including general methods to correlate, visualize, and extrapolate botnet behavior across the global Internet.
This paper presents a novel visual analytics technique developed to support exploratory search tasks for event data document collections. The technique supports discovery and exploration by clustering results and overlaying cluster summaries onto coordinated timeline and map views. Users can also explore and interact with search results by selecting clusters to filter and re-cluster the data with animation used to smooth the transition between views. The technique demonstrates a number of advantages over alternative methods for displaying and exploring geo-referenced search results and spatio-temporal data. Firstly, cluster summaries can be presented in a manner that makes them easy to read and scan. Listing representative events from each cluster also helps the process of discovery by preserving the diversity of results. Also, clicking on visual representations of geo-temporal clusters provides a quick and intuitive way to navigate across space and time simultaneously. This removes the need to overload users with the display of too many event labels at any one time. The technique was evaluated with a group of nineteen users and compared with an equivalent text based exploratory search engine.