Visible to the public Biblio

Found 879 results

Filters: Keyword is authentication  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
2
Khan, JavedAkhtar.  2019.  2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :619-623.

This paper proposes the implementation of progressive authentication service in smart android mobile phone. In this digital era, massive amount of work can be done in the digital form using the smart devices like smart phone , laptop, Tablets, etc. The number of smartphone users approx. reach to 299.24 million, as per the recent survey report [1] in 2019 this count will reach 2.7 billion and after 3 years, this count will increase up to 442.5 million. This article includes a cluster based progressive smart lock with a dependent combination that is short and more secure in nature. Android provides smart lock facilities with the combination of 9 dot, 6dot, 5dot, 4dot and 1-9 number. By using this mobile phone user will be able to generate pattern lock or number password for authentication. This is a single authentication system, this research paper includes a more secured multiple cluster based pattern match system.

Blue, Logan, Abdullah, Hadi, Vargas, Luis, Traynor, Patrick.  2018.  2MA: Verifying Voice Commands via Two Microphone Authentication. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :89–100.
Voice controlled interfaces have vastly improved the usability of many devices (e.g., headless IoT systems). Unfortunately, the lack of authentication for these interfaces has also introduced command injection vulnerabilities - whether via compromised IoT devices, television ads or simply malicious nearby neighbors, causing such devices to perform unauthenticated sensitive commands is relatively easy. We address these weaknesses with Two Microphone Authentication (2MA), which takes advantage of the presence of multiple ambient and personal devices operating in the same area. We develop an embodiment of 2MA that combines approximate localization through Direction of Arrival (DOA) techniques with Robust Audio Hashes (RSHs). Our results show that our 2MA system can localize a source to within a narrow physical cone (\$\textbackslashtextless30ˆ\textbackslashtextbackslashcirc \$) with zero false positives, eliminate replay attacks and prevent the injection of inaudible/hidden commands. As such, we dramatically increase the difficulty for an adversary to carry out such attacks and demonstrate that 2MA is an effective means of authenticating and localizing voice commands.
A
Buranasaksee, U., Porkaew, K., Supasitthimethee, U..  2014.  AccAuth: Accounting system for OAuth protocol. Applications of Digital Information and Web Technologies (ICADIWT), 2014 Fifth International Conference on the. :8-13.

When a user accesses a resource, the accounting process at the server side does the job of keeping track of the resource usage so as to charge the user. In cloud computing, a user may use more than one service provider and need two independent service providers to work together. In this user-centric context, the user is the owner of the information and has the right to authorize to a third party application to access the protected resource on the user's behalf. Therefore, the user also needs to monitor the authorized resource usage he granted to third party applications. However, the existing accounting protocols were proposed to monitor the resource usage in terms of how the user uses the resource from the service provider. This paper proposed the user-centric accounting model called AccAuth which designs an accounting layer to an OAuth protocol. Then the prototype was implemented, and the proposed model was evaluated against the standard requirements. The result showed that AccAuth passed all the requirements.
 

Yi, Zhuo, Du, Xuehui, Liao, Ying, Lu, Xin.  2019.  An Access Authentication Algorithm Based on a Hierarchical Identity-Based Signature over Lattice for the Space-Ground Integrated Network. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–9.

Access authentication is a key technology to identify the legitimacy of mobile users when accessing the space-ground integrated networks (SGIN). A hierarchical identity-based signature over lattice (L-HIBS) based mobile access authentication mechanism is proposed to settle the insufficiencies of existing access authentication methods in SGIN such as high computational complexity, large authentication delay and no-resistance to quantum attack. Firstly, the idea of hierarchical identity-based cryptography is introduced according to hierarchical distribution of nodes in SGIN, and a hierarchical access authentication architecture is built. Secondly, a new L-HIBS scheme is constructed based on the Small Integer Solution (SIS) problem to support the hierarchical identity-based cryptography. Thirdly, a mobile access authentication protocol that supports bidirectional authentication and shared session key exchange is designed with the aforementioned L-HIBS scheme. Results of theoretical analysis and simulation experiments suggest that the L-HIBS scheme possesses strong unforgeability of selecting identity and adaptive selection messages under the standard security model, and the authentication protocol has smaller computational overhead and shorter private keys and shorter signature compared to given baseline protocols.

Pollicino, Francesco, Ferretti, Luca, Stabili, Dario, Marchetti, Mirco.  2021.  Accountable and privacy-aware flexible car sharing and rental services. 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA). :1–7.
The transportation sector is undergoing rapid changes to reduce pollution and increase life quality in urban areas. One of the most effective approaches is flexible car rental and sharing to reduce traffic congestion and parking space issues. In this paper, we envision a flexible car sharing framework where vehicle owners want to make their vehicles available for flexible rental to other users. The owners delegate the management of their vehicles to intermediate services under certain policies, such as municipalities or authorized services, which manage the due infrastructure and services that can be accessed by users. We investigate the design of an accountable solution that allow vehicles owners, who want to share their vehicles securely under certain usage policies, to control that delegated services and users comply with the policies. While monitoring users behavior, our approach also takes care of users privacy, preventing tracking or profiling procedures by other parties. Existing approaches put high trust assumptions on users and third parties, do not consider users' privacy requirements, or have limitations in terms of flexibility or applicability. We propose an accountable protocol that extends standard delegated authorizations and integrate it with Security Credential Management Systems (SCMS), while considering the requirements and constraints of vehicular networks. We show that the proposed approach represents a practical approach to guarantee accountability in realistic scenarios with acceptable overhead.
Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S..  2017.  Accumulators with Applications to Anonymity-Preserving Revocation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :301–315.

Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.

Darabseh, A., Namin, A. S..  2015.  On Accuracy of Classification-Based Keystroke Dynamics for Continuous User Authentication. 2015 International Conference on Cyberworlds (CW). :321–324.

The aim of this research is to advance the user active authentication using keystroke dynamics. Through this research, we assess the performance and influence of various keystroke features on keystroke dynamics authentication systems. In particular, we investigate the performance of keystroke features on a subset of most frequently used English words. The performance of four features such as i) key duration, ii) flight time latency, iii) diagraph time latency, and iv) word total time duration are analyzed. Two machine learning techniques are employed for assessing keystroke authentications. The selected classification methods are support vector machine (SVM), and k-nearest neighbor classifier (K-NN). The logged experimental data are captured for 28 users. The experimental results show that key duration time offers the best performance result among all four keystroke features, followed by word total time.

Malathi, V., Balamurugan, B., Eshwar, S..  2017.  Achieving Privacy and Security Using QR Code by Means of Encryption Technique in ATM. 2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM). :281–285.

Smart Card has complications with validation and transmission process. Therefore, by using peeping attack, the secret code was stolen and secret filming while entering Personal Identification Number at the ATM machine. We intend to develop an authentication system to banks that protects the asset of user's. The data of a user is to be ensured that secure and isolated from the data leakage and other attacks Therefore, we propose a system, where ATM machine will have a QR code in which the information's are encrypted corresponding to the ATM machine and a mobile application in the customer's mobile which will decrypt the encoded QR information and sends the information to the server and user's details are displayed in the ATM machine and transaction can be done. Now, the user securely enters information to transfer money without risk of peeping attack in Automated Teller Machine by just scanning the QR code at the ATM by mobile application. Here, both the encryption and decryption technique are carried out by using Triple DES Algorithm (Data Encryption Standard).

Zarazaga, P. P., Bäckström, T., Sigg, S..  2020.  Acoustic Fingerprints for Access Management in Ad-Hoc Sensor Networks. IEEE Access. 8:166083—166094.

Voice user interfaces can offer intuitive interaction with our devices, but the usability and audio quality could be further improved if multiple devices could collaborate to provide a distributed voice user interface. To ensure that users' voices are not shared with unauthorized devices, it is however necessary to design an access management system that adapts to the users' needs. Prior work has demonstrated that a combination of audio fingerprinting and fuzzy cryptography yields a robust pairing of devices without sharing the information that they record. However, the robustness of these systems is partially based on the extensive duration of the recordings that are required to obtain the fingerprint. This paper analyzes methods for robust generation of acoustic fingerprints in short periods of time to enable the responsive pairing of devices according to changes in the acoustic scenery and can be integrated into other typical speech processing tools.

Fridman, L., Weber, S., Greenstadt, R., Kam, M..  2017.  Active Authentication on Mobile Devices via Stylometry, Application Usage, Web Browsing, and GPS Location. IEEE Systems Journal. 11:513–521.

Active authentication is the problem of continuously verifying the identity of a person based on behavioral aspects of their interaction with a computing device. In this paper, we collect and analyze behavioral biometrics data from 200 subjects, each using their personal Android mobile device for a period of at least 30 days. This data set is novel in the context of active authentication due to its size, duration, number of modalities, and absence of restrictions on tracked activity. The geographical colocation of the subjects in the study is representative of a large closed-world environment such as an organization where the unauthorized user of a device is likely to be an insider threat: coming from within the organization. We consider four biometric modalities: 1) text entered via soft keyboard, 2) applications used, 3) websites visited, and 4) physical location of the device as determined from GPS (when outdoors) or WiFi (when indoors). We implement and test a classifier for each modality and organize the classifiers as a parallel binary decision fusion architecture. We are able to characterize the performance of the system with respect to intruder detection time and to quantify the contribution of each modality to the overall performance.

Xue, Mingfu, Wu, Zhiyu, He, Can, Wang, Jian, Liu, Weiqiang.  2020.  Active DNN IP Protection: A Novel User Fingerprint Management and DNN Authorization Control Technique. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :975—982.
The training process of deep learning model is costly. As such, deep learning model can be treated as an intellectual property (IP) of the model creator. However, a pirate can illegally copy, redistribute or abuse the model without permission. In recent years, a few Deep Neural Networks (DNN) IP protection works have been proposed. However, most of existing works passively verify the copyright of the model after the piracy occurs, and lack of user identity management, thus cannot provide commercial copyright management functions. In this paper, a novel user fingerprint management and DNN authorization control technique based on backdoor is proposed to provide active DNN IP protection. The proposed method can not only verify the ownership of the model, but can also authenticate and manage the user's unique identity, so as to provide a commercially applicable DNN IP management mechanism. Experimental results on CIFAR-10, CIFAR-100 and Fashion-MNIST datasets show that the proposed method can achieve high detection rate for user authentication (up to 100% in the three datasets). Illegal users with forged fingerprints cannot pass authentication as the detection rates are all 0 % in the three datasets. Model owner can verify his ownership since he can trigger the backdoor with a high confidence. In addition, the accuracy drops are only 0.52%, 1.61 % and -0.65% on CIFAR-10, CIFAR-100 and Fashion-MNIST, respectively, which indicate that the proposed method will not affect the performance of the DNN models. The proposed method is also robust to model fine-tuning and pruning attacks. The detection rates for owner verification on CIFAR-10, CIFAR-100 and Fashion-MNIST are all 100% after model pruning attack, and are 90 %, 83 % and 93 % respectively after model fine-tuning attack, on the premise that the attacker wants to preserve the accuracy of the model.
Villarreal-Vasquez, M., Bhargava, B., Angin, P..  2017.  Adaptable Safety and Security in V2X Systems. 2017 IEEE International Congress on Internet of Things (ICIOT). :17–24.

With the advances in the areas of mobile computing and wireless communications, V2X systems have become a promising technology enabling deployment of applications providing road safety, traffic efficiency and infotainment. Due to their increasing popularity, V2X networks have become a major target for attackers, making them vulnerable to security threats and network conditions, and thus affecting the safety of passengers, vehicles and roads. Existing research in V2X does not effectively address the safety, security and performance limitation threats to connected vehicles, as a result of considering these aspects separately instead of jointly. In this work, we focus on the analysis of the tradeoffs between safety, security and performance of V2X systems and propose a dynamic adaptability approach considering all three aspects jointly based on application needs and context to achieve maximum safety on the roads using an Internet of vehicles. Experiments with a simple V2V highway scenario demonstrate that an adaptive safety/security approach is essential and V2X systems have great potential for providing low reaction times.

Jagadamba, G, Sheeba, R, Brinda, K N, Rohini, K C, Pratik, S K.  2020.  Adaptive E-Learning Authentication and Monitoring. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :277–283.
E-learning enables the transfer of skills, knowledge, and education to a large number of recipients. The E-Learning platform has the tendency to provide face-to-face learning through a learning management system (LMS) and facilitated an improvement in traditional educational methods. The LMS saves organization time, money and easy administration. LMS also saves user time to move across the learning place by providing a web-based environment. However, a few students could be willing to exploit such a system's weakness in a bid to cheat if the conventional authentication methods are employed. In this scenario user authentication and surveillance of end user is more challenging. A system with the simultaneous authentication is put forth through multifactor adaptive authentication methods. The proposed system provides an efficient, low cost and human intervention adaptive for e-learning environment authentication and monitoring system.
Kakanakov, N., Shopov, M..  2017.  Adaptive models for security and data protection in IoT with Cloud technologies. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1001–1004.

The paper presents an example Sensor-cloud architecture that integrates security as its native ingredient. It is based on the multi-layer client-server model with separation of physical and virtual instances of sensors, gateways, application servers and data storage. It proposes the application of virtualised sensor nodes as a prerequisite for increasing security, privacy, reliability and data protection. All main concerns in Sensor-Cloud security are addressed: from secure association, authentication and authorization to privacy and data integrity and protection. The main concept is that securing the virtual instances is easier to implement, manage and audit and the only bottleneck is the physical interaction between real sensor and its virtual reflection.

Hänel, T., Bothe, A., Helmke, R., Gericke, C., Aschenbruck, N..  2017.  Adjustable security for RFID-equipped IoT devices. 2017 IEEE International Conference on RFID Technology Application (RFID-TA). :208–213.

Over the last years, the number of rather simple interconnected devices in nonindustrial scenarios (e.g., for home automation) has steadily increased. For ease of use, the overall system security is often neglected. Before the Internet of Things (IoT) reaches the same distribution rate and impact in industrial applications, where security is crucial for success, solutions that combine usability, scalability, and security are required. We develop such a security system, mainly targeting sensor modules equipped with Radio Frequency IDentification (RFID) tags which we leverage to increase the security level. More specifically, we consider a network based on Message Queue Telemetry Transport (MQTT) which is a widely adopted protocol for the IoT.

Gabsi, Souhir, Kortli, Yassin, Beroulle, Vincent, Kieffer, Yann, Belgacem, Hamdi.  2022.  Adoption of a Secure ECC-based RFID Authentication Protocol. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :69–74.
A single RFID (Radio Frequency Identification) is a technology for the remote identification of objects or people. It integrates a reader that receives the information contained in an RFID tag through an RFID authentication protocol. RFID provides several security services to protect the data transmitted between the tag and the reader. However, these advantages do not prevent an attacker to access this communication and remaining various security and privacy issues in these systems. Furthermore, with the rapid growth of IoT, there is an urgent need of security authentication and confidential data protection. Authentication protocols based on elliptic curve cryptographic (ECC) were widely investigated and implemented to guarantee protection against the various attacks that can suffer an RFID system. In this paper, we are going to focus on a comparative study between the most efficient ECC-based RFID authentication protocols that are already published, and study their security against the different wireless attacks.
Abdullah, Ghazi Muhammad, Mehmood, Quzal, Khan, Chaudry Bilal Ahmad.  2018.  Adoption of Lamport signature scheme to implement digital signatures in IoT. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–4.
The adoption of Internet of Things (IoT) technology is increasing at a fast rate. With improving software technologies and growing security threats, there is always a need to upgrade the firmware in the IoT devices. Digital signatures are an integral part of digital communication to cope with the threat of these devices being exploited by attackers to run malicious commands, codes or patches on them. Digital Signatures measure the authenticity of the transmitted data as well as are a source of record keeping (repudiation). This study proposes the adoption of Lamport signature scheme, which is quantum resistant, for authentication of data transmission and its feasibility in IoT devices.
Mathew, S., Saranya, G..  2017.  Advanced biometric home security system using digital signature and DNA cryptography. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT). :1–4.

In today's growing concern for home security, we have developed an advanced security system using integrated digital signature and DNA cryptography. The digital signature is formed using multi-feature biometric traits which includes both fingerprint as well as iris image. We further increase the security by using DNA cryptography which is embedded on a smart card. In order to prevent unauthorized access manually or digitally, we use geo-detection which compares the unregistered devices location with the user's location using any of their personal devices such as smart phone or tab.

Chandrashekhar, RV, Visumathi, J, Anandaraj, A. PeterSoosai.  2022.  Advanced Lightweight Encryption Algorithm for Android (IoT) Devices. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.
Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.
Mali, Y. K., Mohanpurkar, A..  2015.  Advanced pin entry method by resisting shoulder surfing attacks. 2015 International Conference on Information Processing (ICIP). :37–42.

The individual distinguishing proof number or (PIN) and Passwords are the remarkable well known verification strategy used in different gadgets, for example, Atms, cell phones, and electronic gateway locks. Unfortunately, the traditional PIN-entrance technique is helpless vulnerable against shoulder-surfing attacks. However, the security examinations used to support these proposed system are not focused around only quantitative investigation, but instead on the results of experiments and testing performed on proposed system. We propose a new theoretical and experimental technique for quantitative security investigation of PIN-entry method. In this paper we first introduce new security idea know as Grid Based Authentication System and rules for secure PIN-entry method by examining the current routines under the new structure. Thus by consider the existing systems guidelines; we try to develop a new PIN-entry method that definitely avoids human shoulder-surfing attacks by significantly increasing the amount of calculations complexity that required for an attacker to penetrate through the secure system.

Marrone, Stefano, Sansone, Carlo.  2019.  An Adversarial Perturbation Approach Against CNN-based Soft Biometrics Detection. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.
The use of biometric-based authentication systems spread over daily life consumer electronics. Over the years, researchers' interest shifted from hard (such as fingerprints, voice and keystroke dynamics) to soft biometrics (such as age, ethnicity and gender), mainly by using the latter to improve the authentication systems effectiveness. While newer approaches are constantly being proposed by domain experts, in the last years Deep Learning has raised in many computer vision tasks, also becoming the current state-of-art for several biometric approaches. However, since the automatic processing of data rich in sensitive information could expose users to privacy threats associated to their unfair use (i.e. gender or ethnicity), in the last years researchers started to focus on the development of defensive strategies in the view of a more secure and private AI. The aim of this work is to exploit Adversarial Perturbation, namely approaches able to mislead state-of-the-art CNNs by injecting a suitable small perturbation over the input image, to protect subjects against unwanted soft biometrics-based identification by automatic means. In particular, since ethnicity is one of the most critical soft biometrics, as a case of study we will focus on the generation of adversarial stickers that, once printed, can hide subjects ethnicity in a real-world scenario.
Pappu, Shiburaj, Kangane, Dhanashree, Shah, Varsha, Mandwiwala, Junaid.  2021.  AI-Assisted Risk Based Two Factor Authentication Method (AIA-RB-2FA). 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). :1—5.
Authentication, forms an important step in any security system to allow access to resources that are to be restricted. In this paper, we propose a novel artificial intelligence-assisted risk-based two-factor authentication method. We begin with the details of existing systems in use and then compare the two systems viz: Two Factor Authentication (2FA), Risk-Based Two Factor Authentication (RB-2FA) with each other followed by our proposed AIA-RB-2FA method. The proposed method starts by recording the user features every time the user logs in and learns from the user behavior. Once sufficient data is recorded which could train the AI model, the system starts monitoring each login attempt and predicts whether the user is the owner of the account they are trying to access. If they are not, then we fallback to 2FA.
Lu, Jiqiang.  2017.  Almost Universal Forgery Attacks on the COPA and Marble Authenticated Encryption Algorithms. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :789–799.
The COPA authenticated encryption mode was proved to have a birthday-bound security on integrity, and its instantiation AES-COPA (v1/2) was claimed or conjectured to have a full security on tag guessing. The Marble (v1.0/1.1/1.2) authenticated encryption algorithm was claimed to have a full security on authenticity. Both AES-COPA (v1) and Marble (v1.0) were submitted to the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) in 2014, and Marble was revised twice (v1.1/1.2) in the first round of CAESAR, and AES-COPA (v1) was tweaked (v2) for the second round of CAESAR. In this paper, we cryptanalyse the basic cases of COPA, AES-COPA and Marble, that process messages of a multiple of the block size long; we present collision-based almost universal forgery attacks on the basic cases of COPA, AES-COPA (v1/2) and Marble (v1.0/1.1/1.2), and show that the basic cases of COPA and AES-COPA have roughly at most a birthday-bound security on tag guessing and the basic case of Marble has roughly at most a birthday-bound security on authenticity. The attacks on COPA and AES-COPA do not violate their birthday-bound security proof on integrity, but the attack on AES-COPA violates its full security claim or conjecture on tag guessing. Therefore, the full security claim or conjecture on tag guessing of AES-COPA and the full security claim on authenticity of Marble are incorrectly far overestimated in the sense of a general understanding of full security of these security notions. Designers should pay attention to these attacks when designing authenticated encryption algorithms with similar structures in the future, and should be careful when claiming the security of an advanced form of a security notion without making a corresponding proof after proving the security of the security notion only under its most fundamental form.
Islam, Ashhadul, Belhaouari, Samir Brahim.  2022.  Analysing keystroke dynamics using wavelet transforms. 2022 IEEE International Carnahan Conference on Security Technology (ICCST). :1–5.
Many smartphones are lost every year, with a meager percentage recovered. In many cases, users with malicious intent access these phones and use them to acquire sensitive data. There is a need for continuous monitoring and surveillance in smartphones, and keystroke dynamics play an essential role in identifying whether a phone is being used by its owner or an impersonator. Also, there is a growing need to replace expensive 2-tier authentication methods like One-time passwords (OTP) with cheaper and more robust methods. The methods proposed in this paper are applied to existing data and are proven to train more robust classifiers. A novel feature extraction method by wavelet transformation is demonstrated to convert keystroke data into features. The comparative study of classifiers trained on the extracted features vs. features extracted by existing methods shows that the processes proposed perform better than the state-of-art feature extraction methods.
ISSN: 2153-0742
Bicakci, Kemal, Salman, Oguzhan, Uzunay, Yusuf, Tan, Mehmet.  2020.  Analysis and Evaluation of Keystroke Dynamics as a Feature of Contextual Authentication. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :11—17.
The following topics are dealt with: authorisation; data privacy; mobile computing; security of data; cryptography; Internet of Things; message authentication; invasive software; Android (operating system); vectors.