Visible to the public Biblio

Filters: Keyword is multiple regression  [Clear All Filters]
2023-06-22
Das, Soumyajit, Dayam, Zeeshaan, Chatterjee, Pinaki Sankar.  2022.  Application of Random Forest Classifier for Prevention and Detection of Distributed Denial of Service Attacks. 2022 OITS International Conference on Information Technology (OCIT). :380–384.
A classification issue in machine learning is the issue of spotting Distributed Denial of Service (DDos) attacks. A Denial of Service (DoS) assault is essentially a deliberate attack launched from a single source with the implied intent of rendering the target's application unavailable. Attackers typically aims to consume all available network bandwidth in order to accomplish this, which inhibits authorized users from accessing system resources and denies them access. DDoS assaults, in contrast to DoS attacks, include several sources being used by the attacker to launch an attack. At the network, transportation, presentation, and application layers of a 7-layer OSI architecture, DDoS attacks are most frequently observed. With the help of the most well-known standard dataset and multiple regression analysis, we have created a machine learning model in this work that can predict DDoS and bot assaults based on traffic.
2022-09-16
Kozlov, Aleksandr, Noga, Nikolai.  2021.  Applying the Methods of Regression Analysis and Fuzzy Logic for Assessing the Information Security Risk of Complex Systems. 2021 14th International Conference Management of large-scale system development (MLSD). :1—5.
The proposed method allows us to determine the predicted value of the complex systems information security risk and its confidence interval using regression analysis and fuzzy logic in terms of the risk dependence on various factors: the value of resources, the level of threats, potential damage, the level of costs for creating and operating the system, the information resources control level.