Visible to the public Biblio

Filters: Keyword is Wide area measurements  [Clear All Filters]
2023-01-20
Abdelrahman, Mahmoud S., Kassem, A., Saad, Ahmed A., Mohammed, Osama A..  2022.  Real-Time Wide Area Event Identification and Analysis in Power Grid Based on EWAMS. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–13.
Event detection and classification are crucial to power system stability. The Wide Area Measurement System (WAMS) technology helps in enhancing wide area situational awareness by providing useful synchronized information to the grid control center in order to accurately identify various power system events. This paper demonstrates the viability of using EWAMS (Egyptian Wide Area Measurement System) data as one of the evolving technologies of smart grid to identify extreme events within the Egyptian power grid. The proposed scheme is based on online synchronized measurements of wide-area monitoring devices known as Frequency Disturbance Recorders (FDRs) deployed at selected substations within the grid. The FDR measures the voltage, voltage angle, and frequency at the substation and streams the processed results to the Helwan University Host Server (HUHS). Each FDR is associated with a timestamp reference to the Global Positioning System (GPS) base. An EWAMS-based frequency disturbance detection algorithm based on the rate of frequency deviation is developed to identify varies types of events such as generator trip and load shedding. Based on proper thresholding on the frequency and rate of change of frequency of the Egyptian grid, different types of events have been captured in many locations during the supervision and monitoring the operation of the grid. EWAMS historical data is used to analyze a wide range of data pre-event, during and post-event for future enhancement of situational awareness as well as decision making.
2022-11-18
Alali, Mohammad, Shimim, Farshina Nazrul, Shahooei, Zagros, Bahramipanah, Maryam.  2021.  Intelligent Line Congestion Prognosis in Active Distribution System Using Artificial Neural Network. 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
This paper proposes an intelligent line congestion prognosis scheme based on wide-area measurements, which accurately identifies an impending congestion and the problem causing the congestion. Due to the increasing penetration of renewable energy resources and uncertainty of load/generation patterns in the Active Distribution Networks (ADNs), power line congestion is one of the issues that could happen during peak load conditions or high-power injection by renewable energy resources. Congestion would have devastating effects on both the economical and technical operation of the grid. Hence, it is crucial to accurately predict congestions to alleviate the problem in-time and command proper control actions; such as, power redispatch, incorporating ancillary services and energy storage systems, and load curtailment. We use neural network methods in this work due to their outstanding performance in predicting the nonlinear behavior of the power system. Bayesian Regularization, along with Levenberg-Marquardt algorithm, is used to train the proposed neural networks to predict an impending congestion and its cause. The proposed method is validated using the IEEE 13-bus test system. Utilizing the proposed method, extreme control actions (i.e., protection actions and load curtailment) can be avoided. This method will improve the distribution grid resiliency and ensure the continuous supply of power to the loads.
2022-09-29
Suresh, V., Ramesh, M.K., Shadruddin, Sheikh, Paul, Tapobrata, Bhattacharya, Anirban, Ahmad, Abrar.  2021.  Design and Application of Converged Infrastructure through Virtualization Technology in Grid Operation Control Center in North Eastern Region of India. 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies. :1–5.
Modern day grid operation requires multiple interlinked applications and many automated processes at control center for monitoring and operation of grid. Information technology integrated with operational technology plays a critical role in grid operation. Computing resource requirements of these software applications varies widely and includes high processing applications, high Input/Output (I/O) sensitive applications and applications with low resource requirements. Present day grid operation control center uses various applications for load despatch schedule management, various real-time analytics & optimization applications, post despatch analysis and reporting applications etc. These applications are integrated with Operational Technology (OT) like Data acquisition system / Energy management system (SCADA/EMS), Wide Area Measurement System (WAMS) etc. This paper discusses various design considerations and implementation of converged infrastructure through virtualization technology by consolidation of servers and storages using multi-cluster approach to meet high availability requirement of the applications and achieve desired objectives of grid control center of north eastern region in India. The process involves weighing benefits of different architecture solution, grouping of application hosts, making multiple clusters with reliability and security considerations, and designing suitable infrastructure to meet all end objectives. Reliability, enhanced resource utilization, economic factors, storage and physical node selection, integration issues with OT systems and optimization of cost are the prime design considerations. Modalities adopted to minimize downtime of critical systems for grid operation during migration from the existing infrastructure and integration with OT systems of North Eastern Regional Load Despatch Center are also elaborated in this paper.