Visible to the public Biblio

Filters: Keyword is part-of-speech tagging  [Clear All Filters]
2020-05-18
Nambiar, Sindhya K, Leons, Antony, Jose, Soniya, Arunsree.  2019.  Natural Language Processing Based Part of Speech Tagger using Hidden Markov Model. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :782–785.
In various natural language processing applications, PART-OF-SPEECH (POS) tagging is performed as a preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes the methods to build a Part of speech tagger by using hidden markov model. Supervised learning approach is implemented in which, already tagged sentences in malayalam is used to build hidden markov model.
2015-05-05
Eun Hee Ko, Klabjan, D..  2014.  Semantic Properties of Customer Sentiment in Tweets. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :657-663.

An increasing number of people are using online social networking services (SNSs), and a significant amount of information related to experiences in consumption is shared in this new media form. Text mining is an emerging technique for mining useful information from the web. We aim at discovering in particular tweets semantic patterns in consumers' discussions on social media. Specifically, the purposes of this study are twofold: 1) finding similarity and dissimilarity between two sets of textual documents that include consumers' sentiment polarities, two forms of positive vs. negative opinions and 2) driving actual content from the textual data that has a semantic trend. The considered tweets include consumers' opinions on US retail companies (e.g., Amazon, Walmart). Cosine similarity and K-means clustering methods are used to achieve the former goal, and Latent Dirichlet Allocation (LDA), a popular topic modeling algorithm, is used for the latter purpose. This is the first study which discover semantic properties of textual data in consumption context beyond sentiment analysis. In addition to major findings, we apply LDA (Latent Dirichlet Allocations) to the same data and drew latent topics that represent consumers' positive opinions and negative opinions on social media.