Biblio
keystroke dynamics authenticates the system user by analyzing his typing rhythm. Given that each of us has his own typing rhythm and that the method is based on the keyboard makes it available in all computer machines, these two reasons (uniqueness and reduced cost) have made the method very solicit by administrators of security. In addition, the researchers used the method in different fields that are listed later in the paper.
Vector space models (VSMs) are mathematically well-defined frameworks that have been widely used in text processing. In these models, high-dimensional, often sparse vectors represent text units. In an application, the similarity of vectors -- and hence the text units that they represent -- is computed by a distance formula. The high dimensionality of vectors, however, is a barrier to the performance of methods that employ VSMs. Consequently, a dimensionality reduction technique is employed to alleviate this problem. This paper introduces a new method, called Random Manhattan Indexing (RMI), for the construction of L1 normed VSMs at reduced dimensionality. RMI combines the construction of a VSM and dimension reduction into an incremental, and thus scalable, procedure. In order to attain its goal, RMI employs the sparse Cauchy random projections.