Visible to the public Biblio

Filters: Keyword is unknown but bounded noise  [Clear All Filters]
2023-01-06
Yang, Xuefeng, Liu, Li, Zhang, Yinggang, Li, Yihao, Liu, Pan, Ai, Shili.  2022.  A Privacy-preserving Approach to Distributed Set-membership Estimation over Wireless Sensor Networks. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :974—979.
This paper focuses on the system on wireless sensor networks. The system is linear and the time of the system is discrete as well as variable, which named discrete-time linear time-varying systems (DLTVS). DLTVS are vulnerable to network attacks when exchanging information between sensors in the network, as well as putting their security at risk. A DLTVS with privacy-preserving is designed for this purpose. A set-membership estimator is designed by adding privacy noise obeying the Laplace distribution to state at the initial moment. Simultaneously, the differential privacy of the system is analyzed. On this basis, the real state of the system and the existence form of the estimator for the desired distribution are analyzed. Finally, simulation examples are given, which prove that the model after adding differential privacy can obtain accurate estimates and ensure the security of the system state.