Visible to the public Biblio

Filters: Keyword is Viterbi algorithm  [Clear All Filters]
2023-04-28
Wang, Yiwen, Liang, Jifan, Ma, Xiao.  2022.  Local Constraint-Based Ordered Statistics Decoding for Short Block Codes. 2022 IEEE Information Theory Workshop (ITW). :107–112.
In this paper, we propose a new ordered statistics decoding (OSD) for linear block codes, which is referred to as local constraint-based OSD (LC-OSD). Distinguished from the conventional OSD, which chooses the most reliable basis (MRB) for re-encoding, the LC-OSD chooses an extended MRB on which local constraints are naturally imposed. A list of candidate codewords is then generated by performing a serial list Viterbi algorithm (SLVA) over the trellis specified with the local constraints. To terminate early the SLVA for complexity reduction, we present a simple criterion which monitors the ratio of the bound on the likelihood of the unexplored candidate codewords to the sum of the hard-decision vector’s likelihood and the up-to-date optimal candidate’s likelihood. Simulation results show that the LC-OSD can have a much less number of test patterns than that of the conventional OSD but cause negligible performance loss. Comparisons with other complexity-reduced OSDs are also conducted, showing the advantages of the LC-OSD in terms of complexity.
2020-08-07
Liu, Xiaohu, Li, Laiqiang, Ma, Zhuang, Lin, Xin, Cao, Junyang.  2019.  Design of APT Attack Defense System Based on Dynamic Deception. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1655—1659.
Advanced Persistent Threat (APT) attack has the characteristics of complex attack means, long duration and great harmfulness. Based on the idea of dynamic deception, the paper proposed an APT defense system framework, and analyzed the deception defense process. The paper proposed a hybrid encryption communication mechanism based on socket, a dynamic IP address generation method based on SM4, a dynamic timing selection method based on Viterbi algorithm and a dynamic policy allocation mechanism based on DHCPv6. Tests show that the defense system can dynamically change and effectively defense APT attacks.
2020-06-15
Biradar, Shivleela, Sasi, Smitha.  2018.  Design and Implementation of Secure and Encoded Data Transmission Using Turbo Codes. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
The general idea to achieve error detection and correction is to add some extra bit to an original message, in which the receiver can use to check the flexibility of the message which has been delivered, and to recover the noisy data. Turbo code is one of the forward error correction method, which is able to achieve the channel capacity, with nearer Shannon limit, encoding and decoding of text and images are performed. Methods and the working have been explained in this paper. The error has also introduced and detection and correction of errors have been achieved. Transmission will be secure it can secure the information by the theft.
2020-05-18
Nambiar, Sindhya K, Leons, Antony, Jose, Soniya, Arunsree.  2019.  Natural Language Processing Based Part of Speech Tagger using Hidden Markov Model. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :782–785.
In various natural language processing applications, PART-OF-SPEECH (POS) tagging is performed as a preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes the methods to build a Part of speech tagger by using hidden markov model. Supervised learning approach is implemented in which, already tagged sentences in malayalam is used to build hidden markov model.
2019-01-21
Wang, X., Hou, Y., Huang, X., Li, D., Tao, X., Xu, J..  2018.  Security Analysis of Key Extraction from Physical Measurements with Multiple Adversaries. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, security of secret key extraction scheme is evaluated for private communication between legitimate wireless devices. Multiple adversaries that distribute around these legitimate wireless devices eavesdrop on the data transmitted between them, and deduce the secret key. Conditional min-entropy given the view of those adversaries is utilized as security evaluation metric in this paper. Besides, the wiretap channel model and hidden Markov model (HMM) are regarded as the channel model and a dynamic programming approach is used to approximate conditional min- entropy. Two algorithms are proposed to mathematically calculate the conditional min- entropy by combining the Viterbi algorithm with the Forward algorithm. Optimal method with multiple adversaries (OME) algorithm is proposed firstly, which has superior performance but exponential computation complexity. To reduce this complexity, suboptimal method with multiple adversaries (SOME) algorithm is proposed, using performance degradation for the computation complexity reduction. In addition to the theoretical analysis, simulation results further show that the OME algorithm indeed has superior performance as well as the SOME algorithm has more efficient computation.
2015-05-05
Lomotey, R.K., Deters, R..  2014.  Terms Mining in Document-Based NoSQL: Response to Unstructured Data. Big Data (BigData Congress), 2014 IEEE International Congress on. :661-668.

Unstructured data mining has become topical recently due to the availability of high-dimensional and voluminous digital content (known as "Big Data") across the enterprise spectrum. The Relational Database Management Systems (RDBMS) have been employed over the past decades for content storage and management, but, the ever-growing heterogeneity in today's data calls for a new storage approach. Thus, the NoSQL database has emerged as the preferred storage facility nowadays since the facility supports unstructured data storage. This creates the need to explore efficient data mining techniques from such NoSQL systems since the available tools and frameworks which are designed for RDBMS are often not directly applicable. In this paper, we focused on topics and terms mining, based on clustering, in document-based NoSQL. This is achieved by adapting the architectural design of an analytics-as-a-service framework and the proposal of the Viterbi algorithm to enhance the accuracy of the terms classification in the system. The results from the pilot testing of our work show higher accuracy in comparison to some previously proposed techniques such as the parallel search.