Biblio
Due to openness of the deployed environment and transmission medium, Wireless Sensor Networks (WSNs) suffers from various types of security attacks including Denial of service, Sinkhole, Tampering etc. Securing WSN is achieved a greater research interest and this paper proposes a new secure routing strategy for WSNs based on trust model. In this model, initially the sensor nodes of the network are formulated as clusters. Further a trust evaluation mechanism was accomplished for every sensor node at Cluster Head level to build a secure route for data transmission from sensor node to base station. Here the trust evaluation is carried out only at cluster head and also the cluster head is chosen in such a way the node having rich resources availability. The trust evaluation is a composition of the social trust and data trust. Simulation experiments are conducted over the proposed approach and the performance is measured through the performance metrics such as network lifetime, and Malicious Detection Rate. The obtained performance metrics shows the outstanding performance of proposed approach even in the increased malicious behavior of network.
Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas.
Vehicular ad-hoc networks (VANETs) provides infrastructure less, rapidly deployable, self-configurable network connectivity. The network is the collection vehicles interlinked by wireless links and willing to store and forward data for their peers. As vehicles move freely and organize themselves arbitrarily, message routing is done dynamically based on network connectivity. Compared with other ad-hoc networks, VANETs are particularly challenging due to the part of the vehicles' high rate of mobility and the numerous signal-weakening barrier, such as buildings, in their environments. Due to their enormous potential, VANET have gained an increasing attention in both industry and academia. Research activities range from lower layer protocol design to applications and implementation issues. A secure VANET system, while exchanging information should protect the system against unauthorized message injection, message alteration, eavesdropping. The security of VANET is one of the most critical issues because their information transmission is propagated in open access (wireless) environments. A few years back VANET has received increased attention as the potential technology to enhance active and preventive safety on the road, as well as travel comfort Safekeeping and privacy are mandatory in vehicular communications for a grateful acceptance and use of such technology. This paper is an attempt to highlight the problems occurred in Vehicular Ad hoc Networks and security issues.