Biblio
Security and making trust is the first step toward development in both real and virtual societies. Internet-based development is inevitable. Increasing penetration of technology in the internet banking and its effectiveness in contributing to banking profitability and prosperity requires that satisfied customers turn into loyal customers. Currently, a large number of cyber attacks have been focused on online banking systems, and these attacks are considered as a significant security threat. Banks or customers might become the victim of the most complicated financial crime, namely internet fraud. This study has developed an intelligent system that enables detecting the user's abnormal behavior in online banking. Since the user's behavior is associated with uncertainty, the system has been developed based on the fuzzy theory, This enables it to identify user behaviors and categorize suspicious behaviors with various levels of intensity. The performance of the fuzzy expert system has been evaluated using an receiver operating characteristic curve, which provides the accuracy of 94%. This expert system is optimistic to be used for improving e-banking services security and quality.
The increasing exploitation of the internet leads to new uncertainties, due to interdependencies and links between cyber and physical layers. As an example, the integration between telecommunication and physical processes, that happens when the power grid is managed and controlled, yields to epistemic uncertainty. Managing this uncertainty is possible using specific frameworks, usually coming from fuzzy theory such as Evidence Theory. This approach is attractive due to its flexibility in managing uncertainty by means of simple rule-based systems with data coming from heterogeneous sources. In this paper, Evidence Theory is applied in order to evaluate risk. Therefore, the authors propose a frame of discernment with a specific property among the elements based on a graph representation. This relationship leads to a smaller power set (called Reduced Power Set) that can be used as the classical power set, when the most common combination rules, such as Dempster or Smets, are applied. The paper demonstrates how the use of the Reduced Power Set yields to more efficient algorithms for combining evidences and to application of Evidence Theory for assessing risk.
The performance of ad hoc networks depends on the cooperative and trust nature of the distributed nodes. To enhance security in ad hoc networks, it is important to evaluate the trustworthiness of other nodes without central authorities. An information-theoretic framework is presented, to quantitatively measure trust and build a novel trust model (FAPtrust) with multiple trust decision factors. These decision factors are incorporated to reflect trust relationship's complexity and uncertainty in various angles. The weight of these factors is set up using fuzzy analytic hierarchy process theory based on entropy weight method, which makes the model has a better rationality. Moreover, the fuzzy logic rules prediction mechanism is adopted to update a node's trust for future decision-making. As an application of this model, a novel reactive trust-based multicast routing protocol is proposed. This new trusted protocol provides a flexible and feasible approach in routing decision-making, taking into account both the trust constraint and the malicious node detection in multi-agent systems. Comprehensive experiments have been conducted to evaluate the efficiency of trust model and multicast trust enhancement in the improvement of network interaction quality, trust dynamic adaptability, malicious node identification, attack resistance and enhancements of system's security.