Visible to the public Biblio

Filters: Keyword is network communication  [Clear All Filters]
2021-02-22
Abdelaal, M., Karadeniz, M., Dürr, F., Rothermel, K..  2020.  liteNDN: QoS-Aware Packet Forwarding and Caching for Named Data Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–9.
Recently, named data networking (NDN) has been introduced to connect the world of computing devices via naming data instead of their containers. Through this strategic change, NDN brings several new features to network communication, including in-network caching, multipath forwarding, built-in multicast, and data security. Despite these unique features of NDN networking, there exist plenty of opportunities for continuing developments, especially with packet forwarding and caching. In this context, we introduce liteNDN, a novel forwarding and caching strategy for NDN networks. liteNDN comprises a cooperative forwarding strategy through which NDN routers share their knowledge, i.e. data names and interfaces, to optimize their packet forwarding decisions. Subsequently, liteNDN leverages that knowledge to estimate the probability of each downstream path to swiftly retrieve the requested data. Additionally, liteNDN exploits heuristics, such as routing costs and data significance, to make proper decisions about caching normal as well as segmented packets. The proposed approach has been extensively evaluated in terms of the data retrieval latency, network utilization, and the cache hit rate. The results showed that liteNDN, compared to conventional NDN forwarding and caching strategies, achieves much less latency while reducing the unnecessary traffic and caching activities.
2021-01-20
Gadient, P., Ghafari, M., Tarnutzer, M., Nierstrasz, O..  2020.  Web APIs in Android through the Lens of Security. 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). :13—22.

Web communication has become an indispensable characteristic of mobile apps. However, it is not clear what data the apps transmit, to whom, and what consequences such transmissions have. We analyzed the web communications found in mobile apps from the perspective of security. We first manually studied 160 Android apps to identify the commonly-used communication libraries, and to understand how they are used in these apps. We then developed a tool to statically identify web API URLs used in the apps, and restore the JSON data schemas including the type and value of each parameter. We extracted 9714 distinct web API URLs that were used in 3 376 apps. We found that developers often use the java.net package for network communication, however, third-party libraries like OkHttp are also used in many apps. We discovered that insecure HTTP connections are seven times more prevalent in closed-source than in open-source apps, and that embedded SQL and JavaScript code is used in web communication in more than 500 different apps. This finding is devastating; it leaves billions of users and API service providers vulnerable to attack.

2020-10-29
Gayathri, S, Seetharaman, R., Subramanian, L.Harihara, Premkumar, S., Viswanathan, S., Chandru, S..  2019.  Wormhole Attack Detection using Energy Model in MANETs. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :264—268.
The mobile ad-hoc networks comprised of nodes that are communicated through dynamic request and also by static table driven technique. The dynamic route discovery in AODV routing creates an unsecure transmission as well as reception. The reason for insecurity is the route request is given to all the nodes in the network communication. The possibility of the intruder nodes are more in the case of dynamic route request. Wormhole attacks in MANETs are creating challenges in the field of network analysis. In this paper the wormhole scenario is realized using high power transmission. This is implemented using energy model of ns2 simulator. The Apptool simulator identifies the energy level of each node and track the node of high transmission power. The performance curves for throughput, node energy for different encrypted values, packet drop ratio, and end to end delay are plotted.
2020-05-08
Saraswat, Pavi, Garg, Kanika, Tripathi, Rajan, Agarwal, Ayush.  2019.  Encryption Algorithm Based on Neural Network. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1—5.
Security is one of the most important needs in network communication. Cryptography is a science which involves two techniques encryption and decryption and it basically enables to send sensitive and confidential data over the unsecure network. The basic idea of cryptography is concealing of the data from unauthenticated users as they can misuse the data. In this paper we use auto associative neural network concept of soft computing in combination with encryption technique to send data securely on communication network.
2020-02-26
Wang, Jun-Wei, Jiang, Yu-Ting, Liu, Zhe.  2019.  A Trusted Routing Mechanism for Mobile Social Networks. 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). :365–369.

In recent years, mobile social networks (MSNs) have developed rapidly and their application fields are becoming more and more widespread. Due to the continuous movement of nodes in mobile social networks, the network topology is very unstable. How to ensure the credibility of network communication is a subject worth studying. In this paper, based on the characteristics of mobile social networks, the definition of trust level is introduced into the DSR routing protocol, and a trusted DSR routing mechanism (TDR) is proposed. The scheme combines the sliding window model to design the calculation method of trust level between nodes and path trust level. The nodes in the network participate in the routing process according to their trust level. When the source node receives multiple routes carried by the response, the appropriate trusted path is selected according to the path trust level. Through simulation analysis, compared with the original DSR protocol, the TDR protocol improves the performance of average delay, route cost and packet delivery fraction, and verifies the reliability and credibility of the TDR protocol.

2019-08-05
He, X., Zhang, Q., Han, Z..  2018.  The Hamiltonian of Data Center Network BCCC. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :147–150.

With the development of cloud computing the topology properties of data center network are important to the computing resources. Recently a data center network structure - BCCC is proposed, which is recursively built structure with many good properties. and expandability. The Hamiltonian and expandability in data center network structure plays an extremely important role in network communication. This paper described the Hamiltonian and expandability of the expandable data center network for BCCC structure, the important role of Hamiltonian and expandability in network traffic.

2019-06-24
Qbeitah, M. A., Aldwairi, M..  2018.  Dynamic malware analysis of phishing emails. 2018 9th International Conference on Information and Communication Systems (ICICS). :18–24.

Malicious software or malware is one of the most significant dangers facing the Internet today. In the fight against malware, users depend on anti-malware and anti-virus products to proactively detect threats before damage is done. Those products rely on static signatures obtained through malware analysis. Unfortunately, malware authors are always one step ahead in avoiding detection. This research deals with dynamic malware analysis, which emphasizes on: how the malware will behave after execution, what changes to the operating system, registry and network communication take place. Dynamic analysis opens up the doors for automatic generation of anomaly and active signatures based on the new malware's behavior. The research includes a design of honeypot to capture new malware and a complete dynamic analysis laboratory setting. We propose a standard analysis methodology by preparing the analysis tools, then running the malicious samples in a controlled environment to investigate their behavior. We analyze 173 recent Phishing emails and 45 SPIM messages in search for potentially new malwares, we present two malware samples and their comprehensive dynamic analysis.

2018-02-02
Modarresi, A., Gangadhar, S., Sterbenz, J. P. G..  2017.  A framework for improving network resilience using SDN and fog nodes. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

The IoT (Internet of Things) is one of the primary reasons for the massive growth in the number of connected devices to the Internet, thus leading to an increased volume of traffic in the core network. Fog and edge computing are becoming a solution to handle IoT traffic by moving timesensitive processing to the edge of the network, while using the conventional cloud for historical analysis and long-term storage. Providing processing, storage, and network communication at the edge network are the aim of fog computing to reduce delay, network traffic, and decentralise computing. In this paper, we define a framework that realises fog computing that can be extended to install any service of choice. Our framework utilises fog nodes as an extension of the traditional switch to include processing, networking, and storage. The fog nodes act as local decision-making elements that interface with software-defined networking (SDN), to be able to push updates throughout the network. To test our framework, we develop an IP spoofing security application and ensure its correctness through multiple experiments.

2015-05-06
Singh, M.P., Manjul, M., Yadav, M..  2014.  Hash based efficient secure routing for network communication. Computing for Sustainable Global Development (INDIACom), 2014 International Conference on. :881-888.

Mobile ad-hoc networks are a new field in networking because it works as an autonomous network. Application of mobile ad-hoc networks are increasing day by day in recent year now a days. So it important is increasing to provide suitable routing protocol and security from attacker. Mobile ad-hoc network now a days faces many problems such as small bandwidth, energy, security, limited computational and high mobility. The main problem in mobile ad-hoc networks is that wireless networks, Infrastructure wireless networks have larger bandwidth, larger memory, power backup and different routing protocol easily applies. But in case of mobile ad-hoc networks some of these application failed due to mobility and small power backup so it is required such type of routing protocol which is take small energy during the transfer of packet. So we see that still there are many challenging works in mobile ad-hoc networks remained and to research in this area related to routing protocol, security issues, solving energy problem and many more which is feasible to it. Our research most probably will be dedicated to Authentication in mobile ad-hoc network.