Biblio
Filters: Keyword is Termination of employment [Clear All Filters]
Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
.
2022. Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
A Secure Turbo Codes Design on Physical Layer Security Based on Interleaving and Puncturing. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–7.
.
2022. Nowadays, improving the reliability and security of the transmitted data has gained more attention with the increase in emerging power-limited and lightweight communication devices. Also, the transmission needs to meet specific latency requirements. Combining data encryption and encoding in one physical layer block has been exploited to study the effect on security and latency over traditional sequential data transmission. Some of the current works target secure error-correcting codes that may be candidates for post-quantum computing. However, modifying the popularly used channel coding techniques to guarantee secrecy and maintain the same error performance and complexity at the decoder is challenging since the structure of the channel coding blocks is altered which results in less optimal decoding performance. Also, the redundancy nature of the error-correcting codes complicates the encryption method. In this paper, we briefly review the proposed security schemes on Turbo codes. Then, we propose a secure turbo code design and compare it with the relevant security schemes in the literature. We show that the proposed method is more secure without adding complexity.
ISSN: 2577-2465