Visible to the public Biblio

Filters: Keyword is route discovery  [Clear All Filters]
2020-02-26
Dhanya, K., Jeyalakshmi, C., Balakumar, A..  2019.  A Secure Autonomic Mobile Ad-Hoc Network Based Trusted Routing Proposal. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.

This research proposes an inspection on Trust Based Routing protocols to protect Internet of Things directing to authorize dependability and privacy amid to direction-finding procedure in inaccessible systems. There are number of Internet of Things (IOT) gadgets are interrelated all inclusive, the main issue is the means by which to protect the routing of information in the important systems from different types of stabbings. Clients won't feel secure on the off chance that they know their private evidence could without much of a stretch be gotten to and traded off by unapproved people or machines over the system. Trust is an imperative part of Internet of Things (IOT). It empowers elements to adapt to vulnerability and roughness caused by the through and through freedom of other devices. In Mobile Ad-hoc Network (MANET) host moves frequently in any bearing, so that the topology of the network also changes frequently. No specific algorithm is used for routing the packets. Packets/data must be routed by intermediate nodes. It is procumbent to different occurrences ease. There are various approaches to compute trust for a node such as fuzzy trust approach, trust administration approach, hybrid approach, etc. Adaptive Information Dissemination (AID) is a mechanism which ensures the packets in a specific transmission and it analysis of is there any attacks by hackers.It encompasses of ensuring the packet count and route detection between source and destination with trusted path.Trust estimation dependent on the specific condition or setting of a hub, by sharing the setting information onto alternate hubs in the framework would give a superior answer for this issue.Here we present a survey on various trust organization approaches in MANETs. We bring out instantaneous of these approaches for establishing trust of the partaking hubs in a dynamic and unverifiable MANET atmosphere.

2020-02-17
Johnson, Ashley, Molloy, Joseph, Yunes, Jonathan, Puthuparampil, Joseph, Elleithy, Abdelrahman.  2019.  Security in Wireless Sensors Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–3.
Many routing mechanisms of the wireless sensor network have been suggested in the literature, but there has not been a successful one that was designed with security. In this paper, we discuss the vulnerabilities of wireless sensor networks, how attackers can exploit these vulnerabilities, and the solutions to defend against these attacks. Furthermore, we will suggest solutions and measures secure routing mechanisms in sensor networks and study how it will affect it positively.
2017-03-07
Rmayti, M., Begriche, Y., Khatoun, R., Khoukhi, L., Gaiti, D..  2015.  Flooding attacks detection in MANETs. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–6.

Flooding attacks are well-known security threats that can lead to a denial of service (DoS) in computer networks. These attacks consist of an excessive traffic generation, by which an attacker aim to disrupt or interrupt some services in the network. The impact of flooding attacks is not just about some nodes, it can be also the whole network. Many routing protocols are vulnerable to these attacks, especially those using reactive mechanism of route discovery, like AODV. In this paper, we propose a statistical approach to defense against RREQ flooding attacks in MANETs. Our detection mechanism can be applied on AODV-based ad hoc networks. Simulation results prove that these attacks can be detected with a low rate of false alerts.

2015-05-06
Sarma, K.J., Sharma, R., Das, R..  2014.  A survey of Black hole attack detection in Manet. Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on. :202-205.

MANET is an infrastructure less, dynamic, decentralised network. Any node can join the network and leave the network at any point of time. Due to its simplicity and flexibility, it is widely used in military communication, emergency communication, academic purpose and mobile conferencing. In MANET there no infrastructure hence each node acts as a host and router. They are connected to each other by Peer-to-peer network. Decentralised means there is nothing like client and server. Each and every node is acted like a client and a server. Due to the dynamic nature of mobile Ad-HOC network it is more vulnerable to attack. Since any node can join or leave the network without any permission the security issues are more challenging than other type of network. One of the major security problems in ad hoc networks called the black hole problem. It occurs when a malicious node referred as black hole joins the network. The black hole conducts its malicious behavior during the process of route discovery. For any received RREQ, the black hole claims having route and propagates a faked RREP. The source node responds to these faked RREPs and sends its data through the received routes once the data is received by the black hole; it is dropped instead of being sent to the desired destination. This paper discusses some of the techniques put forwarded by researchers to detect and prevent Black hole attack in MANET using AODV protocol and based on their flaws a new methodology also have been proposed.