Visible to the public Biblio

Filters: Keyword is Intrusion Detection System (IDS)  [Clear All Filters]
2023-07-10
Devi, Reshoo, Kumar, Amit, Kumar, Vivek, Saini, Ashish, Kumari, Amrita, Kumar, Vipin.  2022.  A Review Paper on IDS in Edge Computing or EoT. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP). :30—35.

The main intention of edge computing is to improve network performance by storing and computing data at the edge of the network near the end user. However, its rapid development largely ignores security threats in large-scale computing platforms and their capable applications. Therefore, Security and privacy are crucial need for edge computing and edge computing based environment. Security vulnerabilities in edge computing systems lead to security threats affecting edge computing networks. Therefore, there is a basic need for an intrusion detection system (IDS) designed for edge computing to mitigate security attacks. Due to recent attacks, traditional algorithms may not be possibility for edge computing. This article outlines the latest IDS designed for edge computing and focuses on the corresponding methods, functions and mechanisms. This review also provides deep understanding of emerging security attacks in edge computing. This article proves that although the design and implementation of edge computing IDS have been studied previously, the development of efficient, reliable and powerful IDS for edge computing systems is still a crucial task. At the end of the review, the IDS developed will be introduced as a future prospect.

2023-01-13
Krishna, P. Vamsi, Matta, Venkata Durga Rao.  2022.  A Unique Deep Intrusion Detection Approach (UDIDA) for Detecting the Complex Attacks. 2022 International Conference on Edge Computing and Applications (ICECAA). :557—560.
Intrusion Detection System (IDS) is one of the applications to detect intrusions in the network. IDS aims to detect any malicious activities that protect the computer networks from unknown persons or users called attackers. Network security is one of the significant tasks that should provide secure data transfer. Virtualization of networks becomes more complex for IoT technology. Deep Learning (DL) is most widely used by many networks to detect the complex patterns. This is very suitable approaches for detecting the malicious nodes or attacks. Software-Defined Network (SDN) is the default virtualization computer network. Attackers are developing new technology to attack the networks. Many authors are trying to develop new technologies to attack the networks. To overcome these attacks new protocols are required to prevent these attacks. In this paper, a unique deep intrusion detection approach (UDIDA) is developed to detect the attacks in SDN. Performance shows that the proposed approach is achieved more accuracy than existing approaches.
2022-06-09
Sethi, Tanmay, Mathew, Rejo.  2021.  A Study on Advancement in Honeypot based Network Security Model. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :94–97.
Throughout the years, honeypots have been very useful in tracking down attackers and preventing different types of cyber attacks on a very large scale. It's been almost 3 decades since the discover of honeypots and still more than 80% of the companies rely on this system because of intrusion detection features and low false positive rate. But with time, the attackers tend to start discovering loopholes in the system. Hence it is very important to be up to date with the technology when it comes to protecting a computing device from the emerging cyber attacks. Timely advancements in the security model provided by the honeypots helps in a more efficient use of the resource and also leads to better innovations in that field. The following paper reviews different methods of honeypot network and also gives an insight about the problems that those techniques can face along with their solution. Further it also gives the detail about the most preferred solution among all of the listed techniques in the paper.
2022-05-05
Raikar, Meenaxi M, Meena, S M.  2021.  SSH brute force attack mitigation in Internet of Things (IoT) network : An edge device security measure. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :72—77.
With the explosive growth of IoT applications, billions of things are now connected via edge devices and a colossal volume of data is sent over the internet. Providing security to the user data becomes crucial. The rise in zero-day attacks are a challenge in IoT scenarios. With the large scale of IoT application detection and mitigation of such attacks by the network administrators is cumbersome. The edge device Raspberry pi is remotely logged using Secure Shell (SSH) protocol in 90% of the IoT applications. The case study of SSH brute force attack on the edge device Raspberry pi is demonstrated with experimentation in the IoT networking scenario using Intrusion Detection System (IDS). The IP crawlers available on the internet are used by the attacker to obtain the IP address of the edge device. The proposed system continuously monitors traffic, analysis the log of attack patterns, detects and mitigates SSH brute attack. An attack hijacks and wastes the system resources depriving the authorized users of the resources. With the proposed IDS, we observe 25% CPU conservation, 40% power conservation and 10% memory conservation in resource utilization, as the IDS, mitigates the attack and releases the resources blocked by the attacker.
2022-04-20
Nguyen, Tien, Wang, Shiyuan, Alhazmi, Mohannad, Nazemi, Mostafa, Estebsari, Abouzar, Dehghanian, Payman.  2020.  Electric Power Grid Resilience to Cyber Adversaries: State of the Art. IEEE Access. 8:87592–87608.
The smart electricity grids have been evolving to a more complex cyber-physical ecosystem of infrastructures with integrated communication networks, new carbon-free sources of power generation, advanced monitoring and control systems, and a myriad of emerging modern physical hardware technologies. With the unprecedented complexity and heterogeneity in dynamic smart grid networks comes additional vulnerability to emerging threats such as cyber attacks. Rapid development and deployment of advanced network monitoring and communication systems on one hand, and the growing interdependence of the electric power grids to a multitude of lifeline critical infrastructures on the other, calls for holistic defense strategies to safeguard the power grids against cyber adversaries. In order to improve the resilience of the power grid against adversarial attacks and cyber intrusions, advancements should be sought on detection techniques, protection plans, and mitigation practices in all electricity generation, transmission, and distribution sectors. This survey discusses such major directions and recent advancements from a lens of different detection techniques, equipment protection plans, and mitigation strategies to enhance the energy delivery infrastructure resilience and operational endurance against cyber attacks. This undertaking is essential since even modest improvements in resilience of the power grid against cyber threats could lead to sizeable monetary savings and an enriched overall social welfare.
Conference Name: IEEE Access
2022-03-14
Ouyang, Yuankai, Li, Beibei, Kong, Qinglei, Song, Han, Li, Tao.  2021.  FS-IDS: A Novel Few-Shot Learning Based Intrusion Detection System for SCADA Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.

2022-02-07
Khalifa, Marwa Mohammed, Ucan, Osman Nuri, Ali Alheeti, Khattab M..  2021.  New Intrusion Detection System to Protect MANET Networks Employing Machine Learning Techniques. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–6.
The Intrusion Detection System (IDS) is one of the technologies available to protect mobile ad hoc networks. The system monitors the network and detects intrusion from malicious nodes, aiming at passive (eavesdropping) or positive attack to disrupt the network. This paper proposes a new Intrusion detection system using three Machine Learning (ML) techniques. The ML techniques were Random Forest (RF), support vector machines (SVM), and Naïve Bayes(NB) were used to classify nodes in MANET. The data set was generated by the simulator network simulator-2 (NS-2). The routing protocol was used is Dynamic Source Routing (DSR). The type of IDS used is a Network Intrusion Detection System (NIDS). The dataset was pre-processed, then split into two subsets, 67% for training and 33% for testing employing Python Version 3.8.8. Obtaining good results for RF, SVM and NB when applied randomly selected features in the trial and error method from the dataset to improve the performance of the IDS and reduce time spent for training and testing. The system showed promising results, especially with RF, where the accuracy rate reached 100%.
2022-01-10
Sallam, Youssef F., Ahmed, Hossam El-din H., Saleeb, Adel, El-Bahnasawy, Nirmeen A., El-Samie, Fathi E. Abd.  2021.  Implementation of Network Attack Detection Using Convolutional Neural Network. 2021 International Conference on Electronic Engineering (ICEEM). :1–6.
The Internet obviously has a major impact on the global economy and human life every day. This boundless use pushes the attack programmers to attack the data frameworks on the Internet. Web attacks influence the reliability of the Internet and its administrations. These attacks are classified as User-to-Root (U2R), Remote-to-Local (R2L), Denial-of-Service (DoS) and Probing (Probe). Subsequently, making sure about web framework security and protecting data are pivotal. The conventional layers of safeguards like antivirus scanners, firewalls and proxies, which are applied to treat the security weaknesses are insufficient. So, Intrusion Detection Systems (IDSs) are utilized to screen PC and data frameworks for security shortcomings. IDS adds more effectiveness in securing networks against attacks. This paper presents an IDS model based on Deep Learning (DL) with Convolutional Neural Network (CNN) hypothesis. The model has been evaluated on the NSLKDD dataset. It has been trained by Kddtrain+ and tested twice, once using kddtrain+ and the other using kddtest+. The achieved test accuracies are 99.7% and 98.43% with 0.002 and 0.02 wrong alert rates for the two test scenarios, respectively.
2021-08-11
Ferrag, Mohamed Amine, Maglaras, Leandros.  2020.  DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart Grids. IEEE Transactions on Engineering Management. 67:1285–1297.
In this paper, we propose a novel deep learning and blockchain-based energy framework for smart grids, entitled DeepCoin. The DeepCoin framework uses two schemes, a blockchain-based scheme and a deep learning-based scheme. The blockchain-based scheme consists of five phases: setup phase, agreement phase, creating a block phase and consensus-making phase, and view change phase. It incorporates a novel reliable peer-to-peer energy system that is based on the practical Byzantine fault tolerance algorithm and it achieves high throughput. In order to prevent smart grid attacks, the proposed framework makes the generation of blocks using short signatures and hash functions. The proposed deep learning-based scheme is an intrusion detection system (IDS), which employs recurrent neural networks for detecting network attacks and fraudulent transactions in the blockchain-based energy network. We study the performance of the proposed IDS on three different sources the CICIDS2017 dataset, a power system dataset, and a web robot (Bot)-Internet of Things (IoT) dataset.
2021-04-27
reddy, S. V. Siva, Saravanan, S..  2020.  Performance Evaluation of Classification Algorithms in the Design of Apache Spark based Intrusion Detection System. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :443—447.

Information security is a process of securing data from security breaches, hackers. The program of intrusion detection is a software framework that keeps tracking and analyzing the data in the network to identify the attacks by using traditional techniques. These traditional intrusion techniques work very efficient when it uses on small data. but when the same techniques used for big data, process of analyzing the data properties take long time and become not efficient and need to use the big data technologies like Apache Spark, Hadoop, Flink etc. to design modern Intrusion Detection System (IDS). In this paper, the design of Apache Spark and classification algorithm-based IDS is presented and employed Chi-square as a feature selection method for selecting the features from network security events data. The performance of Logistic Regression, Decision Tree and SVM is evaluated with SGD in the design of Apache Spark based IDS with AUROC and AUPR used as metrics. Also tabulated the training and testing time of each algorithm and employed NSL-KDD dataset for designing all our experiments.

2021-01-20
Rashid, A., Siddique, M. J., Ahmed, S. M..  2020.  Machine and Deep Learning Based Comparative Analysis Using Hybrid Approaches for Intrusion Detection System. 2020 3rd International Conference on Advancements in Computational Sciences (ICACS). :1—9.

Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.

2020-12-01
Quingueni, A. M., Kitsuwan, N..  2019.  Reduction of traffic between switches and IDS for prevention of DoS attack in SDN. 2019 19th International Symposium on Communications and Information Technologies (ISCIT). :277—281.

Denial of service (DoS) is a process of injecting malicious packets into the network. Intrusion detection system (IDS) is a system used to investigate malicious packets in the network. Software-defined network (SDN) physically separates control plane and data plane. The control plane is moved to a centralized controller, and it makes a decision in the network from a global view. The combination between IDS and SDN allows the prevention of malicious packets to be more efficient due to the advantage of the global view in SDN. IDS needs to communicate with switches to have an access to all end-to-end traffic in the network. The high traffic in the link between switches and IDS results in congestion. The congestion between switches and IDS delays the detection and prevention of malicious traffic. To address this problem, we propose a historical database (Hdb), a scheme to reduce the traffic between switches and IDS, based on the historical information of a sender. The simulation shows that in the average, 54.1% of traffic mirrored to IDS is reduced compared to the conventional schemes.

2020-10-19
Peng, Ruxiang, Li, Weishi, Yang, Tao, Huafeng, Kong.  2019.  An Internet of Vehicles Intrusion Detection System Based on a Convolutional Neural Network. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1595–1599.
With the continuous development of the Internet of Vehicles, vehicles are no longer isolated nodes, but become a node in the car network. The open Internet will introduce traditional security issues into the Internet of Things. In order to ensure the safety of the networked cars, we hope to set up an intrusion detection system (IDS) on the vehicle terminal to detect and intercept network attacks. In our work, we designed an intrusion detection system for the Internet of Vehicles based on a convolutional neural network, which can run in a low-powered embedded vehicle terminal to monitor the data in the car network in real time. Moreover, for the case of packet encryption in some car networks, we have also designed a separate version for intrusion detection by analyzing the packet header. Experiments have shown that our system can guarantee high accuracy detection at low latency for attack traffic.
2020-07-27
Sandosh, S., Govindasamy, V., Akila, G., Deepasangavy, K., FemidhaBegam, S., Sowmiya, B..  2019.  A Progressive Intrusion Detection System through Event Processing: Challenges and Motivation. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–7.
In this contemporary world, working on internet is a crucial task owing to the security threats in the network like intrusions, injections etc. To recognize and reduce these system attacks, analysts and academicians have introduced Intrusion Detection Systems (IDSs) with the various standards and applications. There are different types of Intrusion Detection Systems (IDS) arise to solve the attacks in various environments. Though IDS is more powerful, it produces the results on the abnormal behaviours said to be attacks with false positive and false negative rates which leads to inaccurate detection rate. The other problem is that, there are more number of attacks arising simultaneously with different behaviour being detected by the IDS with high false positive rates which spoils the strength and lifetime of the system, system's efficiency and fault tolerance. Complex Event Processing (CEP) plays a vital role in handling the alerts as events in real time environment which mainly helps to recognize and reduce the redundant alerts.CEP identifies and analyses relationships between events in real time, allowing the system to proactively take efficient actions to respond to specific alerts.In this study, the tendency of Complex Event Processing (CEP) over Intrusion Detection System (IDS) which offers effective handling of the alerts received from IDS in real time and the promotion of the better detection of the attacks are discussed. The merits and challenges of CEP over IDS described in this paper helps to understand and educate the IDS systems to focus on how to tackle the dynamic attacks and its alerts in real time.
2020-05-08
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.
2020-03-27
Al-Rushdan, Huthifh, Shurman, Mohammad, Alnabelsi, Sharhabeel H., Althebyan, Qutaibah.  2019.  Zero-Day Attack Detection and Prevention in Software-Defined Networks. 2019 International Arab Conference on Information Technology (ACIT). :278–282.

The zero-day attack in networks exploits an undiscovered vulnerability, in order to affect/damage networks or programs. The term “zero-day” refers to the number of days available to the software or the hardware vendor to issue a patch for this new vulnerability. Currently, the best-known defense mechanism against the zero-day attacks focuses on detection and response, as a prevention effort, which typically fails against unknown or new vulnerabilities. To the best of our knowledge, this attack has not been widely investigated for Software-Defined Networks (SDNs). Therefore, in this work we are motivated to develop anew zero-day attack detection and prevention mechanism, which is designed and implemented for SDN using a modified sandbox tool, named Cuckoo. Our experiments results, under UNIX system, show that our proposed design successfully stops zero-day malwares by isolating the infected client, and thus, prevents these malwares from infesting other clients.

2019-12-02
Wang, Dinghua, Feng, Dongqin.  2018.  Intrusion Detection Model of SCADA Using Graphical Features. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1208–1214.
Supervisory control and data acquisition system is an important part of the country's critical infrastructure, but its inherent network characteristics are vulnerable to attack by intruders. The vulnerability of supervisory control and data acquisition system was analyzed, combining common attacks such as information scanning, response injection, command injection and denial of service in industrial control systems, and proposed an intrusion detection model based on graphical features. The time series of message transmission were visualized, extracting the vertex coordinates and various graphic area features to constitute a new data set, and obtained classification model of intrusion detection through training. An intrusion detection experiment environment was built using tools such as MATLAB and power protocol testers. IEC 60870-5-104 protocol which is widely used in power systems had been taken as an example. The results of tests have good effectiveness.
2019-09-09
Chowdhary, Ankur, Alshamrani, Adel, Huang, Dijiang, Liang, Hongbin.  2018.  MTD Analysis and Evaluation Framework in Software Defined Network (MASON). Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :43–48.
Security issues in a Software Defined Network (SDN) environment like system vulnerabilities and intrusion attempts can pose a security risk for multi-tenant network managed by SDN. In this research work, Moving target defense (MTD)technique based on shuffle strategy - port hopping has been employed to increase the difficulty for the attacker trying to exploit the cloud network. Our research workMASON, considers the problem of multi-stage attacks in a network managed using SDN. SDN controller can be used to dynamically reconfigure the network and render attacker»s knowledge in multi-stage attacks redundant. We have used a threat score based on vulnerability information and intrusion attempts to identify Virtual Machines (VMs) in systems with high-security risk and implement MTD countermeasures port hopping to assess threat score reduction in a cloud network.
2019-01-16
Choudhary, S., Kesswani, N..  2018.  Detection and Prevention of Routing Attacks in Internet of Things. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1537–1540.

Internet of things (IoT) is the smart network which connects smart objects over the Internet. The Internet is untrusted and unreliable network and thus IoT network is vulnerable to different kind of attacks. Conventional encryption and authentication techniques sometimes fail on IoT based network and intrusion may succeed to destroy the network. So, it is necessary to design intrusion detection system for such network. In our paper, we detect routing attacks such as sinkhole and selective forwarding. We have also tried to prevent our network from these attacks. We designed detection and prevention algorithm, i.e., KMA (Key Match Algorithm) and CBA (Cluster- Based Algorithm) in MatLab simulation environment. We gave two intrusion detection mechanisms and compared their results as well. True positive intrusion detection rate for our work is between 50% to 80% with KMA and 76% to 96% with CBA algorithm.

2018-02-27
Potluri, S., Henry, N. F., Diedrich, C..  2017.  Evaluation of Hybrid Deep Learning Techniques for Ensuring Security in Networked Control Systems. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

With the rapid application of the network based communication in industries, the security related problems appear to be inevitable for automation networks. The integration of internet into the automation plant benefited companies and engineers a lot and on the other side paved ways to number of threats. An attack on such control critical infrastructure may endangers people's health and safety, damage industrial facilities and produce financial loss. One of the approach to secure the network in automation is the development of an efficient Network based Intrusion Detection System (NIDS). Despite several techniques available for intrusion detection, they still lag in identifying the possible attacks or novel attacks on network efficiently. In this paper, we evaluate the performance of detection mechanism by combining the deep learning techniques with the machine learning techniques for the development of Intrusion Detection System (IDS). The performance metrics such as precession, recall and F-Measure were measured.

2017-05-16
Calix, Ricardo A., Cabrera, Armando, Iqbal, Irshad.  2016.  Analysis of Parallel Architectures for Network Intrusion Detection. Proceedings of the 5th Annual Conference on Research in Information Technology. :7–12.

Intrusion detection systems need to be both accurate and fast. Speed is important especially when operating at the network level. Additionally, many intrusion detection systems rely on signature based detection approaches. However, machine learning can also be helpful for intrusion detection. One key challenge when using machine learning, aside from the detection accuracy, is using machine learning algorithms that are fast. In this paper, several processing architectures are considered for use in machine learning based intrusion detection systems. These architectures include standard CPUs, GPUs, and cognitive processors. Results of their processing speeds are compared and discussed.

Laszka, Aron, Abbas, Waseem, Sastry, S. Shankar, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2016.  Optimal Thresholds for Intrusion Detection Systems. Proceedings of the Symposium and Bootcamp on the Science of Security. :72–81.

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Yuan, Yali, Kaklamanos, Georgios, Hogrefe, Dieter.  2016.  A Novel Semi-Supervised Adaboost Technique for Network Anomaly Detection. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :111–114.

With the developing of Internet, network intrusion has become more and more common. Quickly identifying and preventing network attacks is getting increasingly more important and difficult. Machine learning techniques have already proven to be robust methods in detecting malicious activities and network threats. Ensemble-based and semi-supervised learning methods are some of the areas that receive most attention in machine learning today. However relatively little attention has been given in combining these methods. To overcome such limitations, this paper proposes a novel network anomaly detection method by using a combination of a tri-training approach with Adaboost algorithms. The bootstrap samples of tri-training are replaced by three different Adaboost algorithms to create the diversity. We run 30 iteration for every simulation to obtain the average results. Simulations indicate that our proposed semi-supervised Adaboost algorithm is reproducible and consistent over a different number of runs. It outperforms other state-of-the-art learning algorithms, even with a small part of labeled data in the training phase. Specifically, it has a very short execution time and a good balance between the detection rate as well as the false-alarm rate.

Kleinmann, Amit, Wool, Avishai.  2016.  Automatic Construction of Statechart-Based Anomaly Detection Models for Multi-Threaded SCADA via Spectral Analysis. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :1–12.

Traffic of Industrial Control System (ICS) between the Human Machine Interface (HMI) and the Programmable Logic Controller (PLC) is highly periodic. However, it is sometimes multiplexed, due to multi-threaded scheduling. In previous work we introduced a Statechart model which includes multiple Deterministic Finite Automata (DFA), one per cyclic pattern. We demonstrated that Statechart-based anomaly detection is highly effective on multiplexed cyclic traffic when the individual cyclic patterns are known. The challenge is to construct the Statechart, by unsupervised learning, from a captured trace of the multiplexed traffic, especially when the same symbols (ICS messages) can appear in multiple cycles, or multiple times in a cycle. Previously we suggested a combinatorial approach for the Statechart construction, based on Euler cycles in the Discrete Time Markov Chain (DTMC) graph of the trace. This combinatorial approach worked well in simple scenarios, but produced a false-alarm rate that was excessive on more complex multiplexed traffic. In this paper we suggest a new Statechart construction method, based on spectral analysis. We use the Fourier transform to identify the dominant periods in the trace. Our algorithm then associates a set of symbols with each dominant period, identifies the order of the symbols within each period, and creates the cyclic DFAs and the Statechart. We evaluated our solution on long traces from two production ICS: one using the Siemens S7-0x72 protocol and the other using Modbus. We also stress-tested our algorithms on a collection of synthetically-generated traces that simulate multiplexed ICS traces with varying levels of symbol uniqueness and time overlap. The resulting Statecharts model the traces with an overall median false-alarm rate as low as 0.16% on the synthetic datasets, and with zero false-alarms on production S7-0x72 traffic. Moreover, the spectral analysis Statecharts consistently out-performed the previous combinatorial Statecharts, exhibiting significantly lower false alarm rates and more compact model sizes.

AlEroud, Ahmed, Karabatis, George.  2016.  Beyond Data: Contextual Information Fusion for Cyber Security Analytics. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :73–79.

A major challenge of the existing attack detection approaches is the identification of relevant information to a particular situation, and the use of such information to perform multi-evidence intrusion detection. Addressing such a limitation requires integrating several aspects of context to better predict, avoid and respond to impending attacks. The quality and adequacy of contextual information is important to decrease uncertainty and correctly identify potential cyber-attacks. In this paper, a systematic methodology has been used to identify contextual dimensions that improve the effectiveness of detecting cyber-attacks. This methodology combines graph, probability, and information theories to create several context-based attack prediction models that analyze data at a high- and low-level. An extensive validation of our approach has been performed using a prototype system and several benchmark intrusion detection datasets yielding very promising results.