Biblio
Due to safety concerns and legislation implemented by various governments, the maritime sector adopted Automatic Identification System (AIS). Whilst governments and state agencies have an increasing reliance on AIS data, the underlying technology can be found to be fundamentally insecure. This study identifies and describes a number of potential attack vectors and suggests conceptual countermeasures to mitigate such attacks. With interception by Navy and Coast Guard as well as marine navigation and obstacle avoidance, the vulnerabilities within AIS call into question the multiple deployed overlapping AIS networks, and what the future holds for the protocol.
In Mobile Ad hoc Networks (MANET) the nodes act as a host as well as a router thereby forming a self-organizing network that does not rely upon fixed infrastructure, other than gateways to other networks. MANET provides a quick to deploy flexible networking capability with a dynamic topology due to node mobility. MANET nodes transmit, relay and receive traffic from neighbor nodes as the network topology changes. Security is important for MANET and trust computation is used to improve collaboration between nodes. MANET trust frameworks utilize real-time trust computations to maintain the trust state for nodes in the network. If the trust computation is not resilient against attack, the trust values computed could be unreliable. This paper proposes an Artificial Immune System based approach to compute trust and thereby provide a resilient reputation mechanism.
Industrial Control Systems (ICS) which among others are comprised of Supervisory Control and Data Acquisition (SCADA) and Distributed Control Systems (DCS) are used to control industrial processes. ICS have now been connected to other Information Technology (IT) systems and have as a result become vulnerable to Advanced Persistent Threats (APT). APTs are targeted attacks that use zero-day attacks to attack systems. Current ICS security mechanisms fail to deter APTs from infiltrating ICS. An analysis of possible solutions to deter APTs was done. This paper proposes the use of Artificial Immune Systems to secure ICS from APTs.
Mobile ad hoc network (MANET) is a self-created and self organized network of wireless mobile nodes. Due to special characteristics of these networks, security issue is a difficult task to achieve. Hence, applying current intrusion detection techniques developed for fixed networks is not sufficient for MANETs. In this paper, we proposed an approach based on genetic algorithm (GA) and artificial immune system (AIS), called GAAIS, for dynamic intrusion detection in AODV-based MANETs. GAAIS is able to adapting itself to network topology changes using two updating methods: partial and total. Each normal feature vector extracted from network traffic is represented by a hypersphere with fix radius. A set of spherical detector is generated using NicheMGA algorithm for covering the nonself space. Spherical detectors are used for detecting anomaly in network traffic. The performance of GAAIS is evaluated for detecting several types of routing attacks simulated using the NS2 simulator, such as Flooding, Blackhole, Neighbor, Rushing, and Wormhole. Experimental results show that GAAIS is more efficient in comparison with similar approaches.