Biblio
In today's time Software Defined Network (SDN) gives the complete control to get the data flow in the network. SDN works as a central point to which data is administered centrally and traffic is also managed. SDN being open source product is more prone to security threats. The security policies are also to be enforced as it would otherwise let the controller be attacked the most. The attacks like DDOS and DOS attacks are more commonly found in SDN controller. DDOS is destructive attack that normally diverts the normal flow of traffic and starts the over flow of flooded packets halting the system. Machine Learning techniques helps to identify the hidden and unexpected pattern of the network and hence helps in analyzing the network flow. All the classified and unclassified techniques can help detect the malicious flow based on certain parameters like packet flow, time duration, accuracy and precision rate. Researchers have used Bayesian Network, Wavelets, Support Vector Machine and KNN to detect DDOS attacks. As per the review it's been analyzed that KNN produces better result as per the higher precision and giving a lower falser rate for detection. This paper produces better approach of hybrid Machine Learning techniques rather than existing KNN on the same data set giving more accuracy of detecting DDOS attacks on higher precision rate. The result of the traffic with both normal and abnormal behavior is shown and as per the result the proposed algorithm is designed which is suited for giving better approach than KNN and will be implemented later on for future.
Mobile Ad-Hoc Networks (MANET) consist of peer-to-peer infrastructure less communicating nodes that are highly dynamic. As a result, routing data becomes more challenging. Ultimately routing protocols for such networks face the challenges of random topology change, nature of the link (symmetric or asymmetric) and power requirement during data transmission. Under such circumstances both, proactive as well as reactive routing are usually inefficient. We consider, zone routing protocol (ZRP) that adds the qualities of the proactive (IARP) and reactive (IERP) protocols. In ZRP, an updated topological map of zone centered on each node, is maintained. Immediate routes are available inside each zone. In order to communicate outside a zone, a route discovery mechanism is employed. The local routing information of the zones helps in this route discovery procedure. In MANET security is always an issue. It is possible that a node can turn malicious and hamper the normal flow of packets in the MANET. In order to overcome such issue we have used a clustering technique to separate the nodes having intrusive behavior from normal behavior. We call this technique as effective k-means clustering which has been motivated from k-means. We propose to implement Intrusion Detection System on each node of the MANET which is using ZRP for packet flow. Then we will use effective k-means to separate the malicious nodes from the network. Thus, our Ad-Hoc network will be free from any malicious activity and normal flow of packets will be possible.
Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs to be observed per flow in order to capture the patterns of malicious traffic. The proposed system has been tested through the series of experiments using traffic traces originating from two well-known P2P botnets and diverse non-malicious applications. The results of experiments indicate that the system is able to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates a strong potential of using the proposed approach within a future on-line detection framework.
Mobile Ad-Hoc Networks (MANET) consist of peer-to-peer infrastructure less communicating nodes that are highly dynamic. As a result, routing data becomes more challenging. Ultimately routing protocols for such networks face the challenges of random topology change, nature of the link (symmetric or asymmetric) and power requirement during data transmission. Under such circumstances both, proactive as well as reactive routing are usually inefficient. We consider, zone routing protocol (ZRP) that adds the qualities of the proactive (IARP) and reactive (IERP) protocols. In ZRP, an updated topological map of zone centered on each node, is maintained. Immediate routes are available inside each zone. In order to communicate outside a zone, a route discovery mechanism is employed. The local routing information of the zones helps in this route discovery procedure. In MANET security is always an issue. It is possible that a node can turn malicious and hamper the normal flow of packets in the MANET. In order to overcome such issue we have used a clustering technique to separate the nodes having intrusive behavior from normal behavior. We call this technique as effective k-means clustering which has been motivated from k-means. We propose to implement Intrusion Detection System on each node of the MANET which is using ZRP for packet flow. Then we will use effective k-means to separate the malicious nodes from the network. Thus, our Ad-Hoc network will be free from any malicious activity and normal flow of packets will be possible.