Biblio
In transient distributed cloud computing environment, software is vulnerable to attack, which leads to software functional completeness, so it is necessary to carry out functional testing. In order to solve the problem of high overhead and high complexity of unsupervised test methods, an intelligent evaluation method for transient analysis software function testing based on active depth learning algorithm is proposed. Firstly, the active deep learning mathematical model of transient analysis software function test is constructed by using association rule mining method, and the correlation dimension characteristics of software function failure are analyzed. Then the reliability of the software is measured by the spectral density distribution method of software functional completeness. The intelligent evaluation model of transient analysis software function testing is established in the transient distributed cloud computing environment, and the function testing and reliability intelligent evaluation are realized. Finally, the performance of the transient analysis software is verified by the simulation experiment. The results show that the accuracy of the software functional integrity positioning is high and the intelligent evaluation of the transient analysis software function testing has a good self-adaptability by using this method to carry out the function test of the transient analysis software. It ensures the safe and reliable operation of the software.
Authorship attribution is the problem of studying an anonymous text and finding the corresponding author in a set of candidate authors. In this paper, we propose a method based on N-grams model for the problem of authorship attribution. Several measures are used to assign an anonymous text to an author. The different variants of the proposed method are implemented and validated on PAN benchmarks. The numerical results are encouraging and demonstrate the benefit of the proposed idea.
One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.
Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.
Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
Dynamic firewalls with stateful inspection have added a lot of security features over the stateless traditional static filters. Dynamic firewalls need to be adaptive. In this paper, we have designed a framework for dynamic firewalls based on probabilistic ontology using Multi Entity Bayesian Networks (MEBN) logic. MEBN extends ordinary Bayesian networks to allow representation of graphical models with repeated substructures and can express a probability distribution over models of any consistent first order theory. The motivation of our proposed work is about preventing novel attacks (i.e. those attacks for which no signatures have been generated yet). The proposed framework is in two important parts: first part is the data flow architecture which extracts important connection based features with the prime goal of an explicit rule inclusion into the rule base of the firewall; second part is the knowledge flow architecture which uses semantic threat graph as well as reasoning under uncertainty to fulfill the required objective of providing futuristic threat prevention technique in dynamic firewalls.