Visible to the public Biblio

Filters: Keyword is graphical models  [Clear All Filters]
2023-05-12
Luo, Man, Yan, Hairong.  2022.  A graph anonymity-based privacy protection scheme for smart city scenarios. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :489–492.
The development of science and technology has led to the construction of smart cities, and in this scenario, there are many applications that need to provide their real-time location information, which is very likely to cause the leakage of personal location privacy. To address this situation, this paper designs a location privacy protection scheme based on graph anonymity, which is based on the privacy protection idea of K-anonymity, and represents the spatial distribution among APs in the form of a graph model, using the method of finding clustered noisy fingerprint information in the graph model to ensure a similar performance to the real location fingerprint in the localization process, and thus will not be distinguished by the location providers. Experiments show that this scheme can improve the effectiveness of virtual locations and reduce the time cost using greedy strategy, which can effectively protect location privacy.
ISSN: 2689-6621
2022-03-08
Ma, Xiaoyu, Yang, Tao, Chen, Jiangchuan, Liu, Ziyu.  2021.  k-Nearest Neighbor algorithm based on feature subspace. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :225—228.
The traditional KNN algorithm takes insufficient consideration of the spatial distribution of training samples, which leads to low accuracy in processing high-dimensional data sets. Moreover, the generation of k nearest neighbors requires all known samples to participate in the distance calculation, resulting in high time overhead. To solve these problems, a feature subspace based KNN algorithm (Feature Subspace KNN, FSS-KNN) is proposed in this paper. First, the FSS-KNN algorithm solves all the feature subspaces according to the distribution of the training samples in the feature space, so as to ensure that the samples in the same subspace have higher similarity. Second, the corresponding feature subspace is matched for the test set samples. On this basis, the search of k nearest neighbors is carried out in the corresponding subspace first, thus improving the accuracy and efficiency of the algorithm. Experimental results show that compared with the traditional KNN algorithm, FSS-KNN algorithm improves the accuracy and efficiency on Kaggle data set and UCI data set. Compared with the other four classical machine learning algorithms, FSS-KNN algorithm can significantly improve the accuracy.
2021-02-16
Kowalski, P., Zocholl, M., Jousselme, A.-L..  2020.  Explainability in threat assessment with evidential networks and sensitivity spaces. 2020 IEEE 23rd International Conference on Information Fusion (FUSION). :1—8.
One of the main threats to the underwater communication cables identified in the recent years is possible tampering or damage by malicious actors. This paper proposes a solution with explanation abilities to detect and investigate this kind of threat within the evidence theory framework. The reasoning scheme implements the traditional “opportunity-capability-intent” threat model to assess a degree to which a given vessel may pose a threat. The scenario discussed considers a variety of possible pieces of information available from different sources. A source quality model is used to reason with the partially reliable sources and the impact of this meta-information on the overall assessment is illustrated. Examples of uncertain relationships between the relevant variables are modelled and the constructed model is used to investigate the probability of threat of four vessels of different types. One of these cases is discussed in more detail to demonstrate the explanation abilities. Explanations about inference are provided thanks to sensitivity spaces in which the impact of the different pieces of information on the reasoning are compared.
2017-07-24
Chakrabarti, Aniket, Marwah, Manish, Arlitt, Martin.  2016.  Robust Anomaly Detection for Large-Scale Sensor Data. Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments. :31–40.

Large scale sensor networks are ubiquitous nowadays. An important objective of deploying sensors is to detect anomalies in the monitored system or infrastructure, which allows remedial measures to be taken to prevent failures, inefficiencies, and security breaches. Most existing sensor anomaly detection methods are local, i.e., they do not capture the global dependency structure of the sensors, nor do they perform well in the presence of missing or erroneous data. In this paper, we propose an anomaly detection technique for large scale sensor data that leverages relationships between sensors to improve robustness even when data is missing or erroneous. We develop a probabilistic graphical model-based global outlier detection technique that represents a sensor network as a pairwise Markov Random Field and uses graphical model inference to detect anomalies. We show our model is more robust than local models, and detects anomalies with 90% accuracy even when 50% of sensors are erroneous. We also build a synthetic graphical model generator that preserves statistical properties of a real data set to test our outlier detection technique at scale.

2017-03-08
Prabhakar, A., Flaßkamp, K., Murphey, T. D..  2015.  Symplectic integration for optimal ergodic control. 2015 54th IEEE Conference on Decision and Control (CDC). :2594–2600.

Autonomous active exploration requires search algorithms that can effectively balance the need for workspace coverage with energetic costs. We present a strategy for planning optimal search trajectories with respect to the distribution of expected information over a workspace. We formulate an iterative optimal control algorithm for general nonlinear dynamics, where the metric for information gain is the difference between the spatial distribution and the statistical representation of the time-averaged trajectory, i.e. ergodicity. Previous work has designed a continuous-time trajectory optimization algorithm. In this paper, we derive two discrete-time iterative trajectory optimization approaches, one based on standard first-order discretization and the other using symplectic integration. The discrete-time methods based on first-order discretization techniques are both faster than the continuous-time method in the studied examples. Moreover, we show that even for a simple system, the choice of discretization has a dramatic impact on the resulting control and state trajectories. While the standard discretization method turns unstable, the symplectic method, which is structure-preserving, achieves lower values for the objective.

2015-05-06
Boruah, A., Hazarika, S.M..  2014.  An MEBN framework as a dynamic firewall's knowledge flow architecture. Signal Processing and Integrated Networks (SPIN), 2014 International Conference on. :249-254.

Dynamic firewalls with stateful inspection have added a lot of security features over the stateless traditional static filters. Dynamic firewalls need to be adaptive. In this paper, we have designed a framework for dynamic firewalls based on probabilistic ontology using Multi Entity Bayesian Networks (MEBN) logic. MEBN extends ordinary Bayesian networks to allow representation of graphical models with repeated substructures and can express a probability distribution over models of any consistent first order theory. The motivation of our proposed work is about preventing novel attacks (i.e. those attacks for which no signatures have been generated yet). The proposed framework is in two important parts: first part is the data flow architecture which extracts important connection based features with the prime goal of an explicit rule inclusion into the rule base of the firewall; second part is the knowledge flow architecture which uses semantic threat graph as well as reasoning under uncertainty to fulfill the required objective of providing futuristic threat prevention technique in dynamic firewalls.